Accessory network for an electronic trip unit

Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S292000, C700S003000, C702S064000

Reexamination Certificate

active

06175780

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to electrical switching apparatus, and more particularly to such apparatus that electrically communicate with a plurality of unique accessory devices.
BACKGROUND INFORMATION
Circuit breakers are widely used in industrial, commercial and residential applications for protecting electrical conductors and apparatus from damage due to excessive current flow. Initially used as a direct replacement for fuses, circuit breakers have been gradually called upon to provide more sophisticated types of protection other than merely interrupting the circuit when the current flow exceeds a certain level. More elaborate time-current trip characteristics have been developed such that a circuit breaker can rapidly open upon very high current with the time delay being roughly inversely proportional to the degree of overload. Circuit breakers are also available which interrupt upon the detection of ground fault currents. As the complexity of electrical distribution circuits has increased, the control portions of the circuit breaker have been interconnected to provide selected coordination.
During the late 1960's, solid state electronic trip units were developed for use in high power, low voltage circuit breakers. These electronic trip units performed functions such as instantaneous and delayed tripping which were traditionally achieved by magnetic and thermal means. The improved accuracy and flexibility of the solid state electronic trip units resulted in their wide spread acceptance.
The earliest electronic trip unit designs utilized discreet components such as transistors, resistors and capacitors. More recently, designs such as disclosed in U.S. Pat. No. 4,428,022 have included microprocessors which provide improved performance and flexibility. Due to the severe space limitations in low voltage circuit breakers, the assignee of this application has developed a special purpose integrated circuit known as a SuRE Chip™, which incorporates a microcontroller core processor, volatile and nonvolatile memory, and an eight bit analog-to-digital converter, four bit pre-ranging circuit amplifiers, comparators, and an input analog multiplexer which provides all of the essential analog and digital circuit functions in a single monolithic device. This device is described in detail in U.S. Pat. No. 5,525,985, issued Jun. 11, 1996.
These digital systems sample the current waveforms periodically to generate a digital representation of the current. The microprocessor uses the samples to execute algorithms which implement the protection curve which is typically based upon a constant value of I
2
t where “I” is the value of current and “t” is the time-to-trip. Typically in air circuit breakers and vacuum interrupters, the protection curve provides an instantaneous trip, a long delay trip and, if appropriate, a short delay trip function. In some circuit interrupters, the microprocessor also performs calculations for metering such as determining the RMS value of the highest phase current.
It is also common today to have a plurality of such circuit interrupters monitored and controlled by a central network control station such as is described in U.S. Pat. No. 5,420,799, issued May 30, 1995. In turn, the circuit interrupters usually have mechanical status indicating accessory devices mounted within the casings which are used by external and remote monitoring and control equipment. Examples of these are auxiliary contacts which follow the open/close status of the circuit breaker and bell alarm contacts which are closed if the breaker is in the tripped condition. While the central monitoring and control network typically communicates digitally with multiple circuit interrupters over a common network, the connection between the internally mounted mechanical contacts within the individual circuit interrupters and the remote slave devices is accomplished in parallel using two wires per pair of contacts. Usually multiple sets of auxiliary contacts are required and thus multiple pairs of wires are needed. The installation of this wire is costly and time consuming. In addition to digital status information, it is also desirable to provide certain analog information such as the value of load current, bus voltage, power factor, etc. Many remote utilization devices, such as programmable logic controllers, require this information as 4-to-20 ma current values. Typically, circuit breaker trip units don't provide 4-to-20 ma outputs.
The increase in related functional versatility that the electronic trip units of circuit breakers have added employing the capabilities of microprocessors has required the processing circuitry to monitor wide ranges in current and related parameters which can vary from open or a zero state, to a normal operating range where most of the metering calculations are performed, to the other extreme or short circuit states which exceed the normal operating range by a factor 10 or greater. Scaling of the monitored value is required to enable the microprocessor to monitor the entire range below its saturation limitations. The extent of scaling required to accommodate the trip values can affect the accuracy of the calculations performed in the metering range, the normal operating state of the protected device. It can also affect the microprocessor's ability to monitor harmonics and small distortions in the current.
Accordingly, an improved circuit interrupter is desired that has more flexibility in communicating with its auxiliary slave devices and has increased sensitivity to the monitored current over its normal operating range.
SUMMARY OF THE INVENTION
An electronic trip unit incorporating this invention communicates with a plurality of unique, remote, accessory devices over a two wire communication bus. The plurality of unique, remote, accessory devices respectively receive information from the electronic trip unit, representative of at least one characteristic or state of the load, and are individually responsive to selective portions of the communication to perform a given function. In the preferred embodiment, the communication bus is an asynchronous, serial, communication network with each accessory device of a given type having a unique address that is defined by its function. This remote accessory bus permits two way communication when requested by the electronic trip unit, which functions as the master. The accessory devices are desirably addressed by their function.
In another embodiment, the electronic trip unit employs a second digital communication network to communicate with a master controller. Communication with the master controller is managed by a first microprocessor within the electronic trip unit while communication with the accessory network is governed by a second microprocessor within the electronic trip unit. The two microprocessors exchange information as needed while one of the two has responsibility for monitoring the load current within its normal range of operation and performing the metering functions associated with that range and the delayed trip function, while the other microprocessor has responsibility for monitoring the ranges of load current associated with instantaneous trip conditions and processing the corresponding algorithms. In a further embodiment the instantaneous trip microprocessor communicates with the accessory network and the delay trip microprocessor communicates with a central network. Communication through the central control network and the auxiliary network are asynchronous though they each can employ their own distinct protocols.


REFERENCES:
patent: 4428022 (1984-01-01), Engel et al.
patent: 4484258 (1984-11-01), Miller et al.
patent: 4996646 (1991-02-01), Farrington
patent: 5203497 (1993-04-01), Ratz et al.
patent: 5280477 (1994-01-01), Trapp
patent: 5420799 (1995-05-01), Peterson et al.
patent: 5428553 (1995-06-01), Chiba et al.
patent: 5500781 (1996-03-01), Santos
patent: 5524083 (1996-06-01), Horne et al.
patent: 5525985 (1996-06-01), Schlotterer et al.
patent: 5596473 (1997-01-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Accessory network for an electronic trip unit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Accessory network for an electronic trip unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Accessory network for an electronic trip unit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465790

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.