Access platform for internal mammary dissection

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S214000, C600S201000

Reexamination Certificate

active

06746467

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to retractors, and more particularly to an access platform that facilitates access to the interior of the chest cavity during surgical procedures.
BACKGROUND OF THE INVENTION
Diseases of the cardiovascular system affect millions of people each year and are a leading cause of death in the United States and throughout the world. The cost to society from such diseases is enormous both in terms of lives lost and the cost of treating cardiac disease patients through surgery. A particularly prevalent form of cardiovascular disease is a reduction in the blood supply to the heart caused by atherosclerosis or other conditions that create a restriction in blood flow at a critical point in the cardiovascular system leading to the heart. In many cases, a blockage or restriction in the blood flow leading to the heart can be treated by a surgical procedure known as a Coronary Artery Bypass Graft (CABG) procedure, which is more commonly known as a “heart bypass” operation. In the CABG procedure, the surgeon either removes a portion of a vein from another part of the body to use as a graft and installs the graft at points that bypass the obstruction to restore normal blood flow to the heart or detaches one end of an artery and connects that end past the obstruction while leaving the other end attached to the arterial supply to restore normal blood flow to the heart.
Although the CABG procedure has become relatively common, i.e., heart bypass surgery is performed in one of every thousand persons in the United States, the procedure is lengthy and traumatic and can damage the heart, the central nervous system, and the blood supply. In a conventional CABG procedure, the surgeon cuts off the blood flow to the heart and then stops the heart from beating in order to install the graft. Thus, in order to perform the conventional CABG procedure, the surgeon must make a long incision down the middle of the chest, saw through the entire length of the sternum, spread the two halves of the sternum apart, and then perform several procedures necessary to attach the patient to a cardiopulmonary bypass machine to continue the circulation of oxygenated blood to the rest of the body while the graft is sewn in place.
The CABG procedure further requires that a connection for the flow of blood be established between two points that “bypass” a diseased area and restore an adequate blood flow. Typically, one end of a graft is sewn to the aorta, while the other end of the graft is sewn to a coronary artery, such as the left anterior descending (LAD) artery that provides blood flow to the main muscles of the heart. This procedure is known as a “free bypass graft.” Alternatively, the internal mammary artery (IMA) pedicle is dissected off of the chest wall, while still attached to its arterial supply, and attached to the LAD past the obstruction. This procedure is known as an “in situ bypass graft.”
In an in situ bypass graft, the IMA must be dissected from its connective tissue until there is sufficient slack in the IMA to insure that the graft does not kink after it is installed. The IMAs, left and right, extend from the subclavian arteries in the neck to the diaphragm and run along the backside of the rib cage adjacent the sternum. During a conventional in situ bypass graft, typically the left half of the sternum is raised to increase the surgeon's access to the left IMA (LIMA) and the heart. A device used for this type of sternal retraction is disclosed in United Kingdom Patent Application No. GB 2267827 A, “A device for Internal Mammary artery dissection.”
Although several efforts have been made to make the CABG procedure less invasive and less traumatic, most techniques still require cardiac bypass and cardioplegia (stoppage of the heart). The safety and efficacy of CABG procedure could be improved if the surgeon could avoid the need to stop the heart from beating during the procedure, thereby eliminating the need to connect the patient to a cardiopulmonary bypass machine to sustain the patient's life during the CABG procedure and, thus, eliminate the need for the lengthy and traumatic surgical procedures necessary to connect the patient to a cardiopulmonary bypass machine. In recent years, a small number of surgeons have begun performing CABG procedures using surgical techniques especially developed to enable surgeons to perform the CABG procedure while the heart is still beating. In such procedures, there is no need for any form of cardiopulmonary bypass, no need to perform the extensive surgical procedures necessary to connect the patient to a cardiopulmonary bypass machine, cardioplegia is rendered unnecessary, the surgery is much less invasive and traumatic, and the entire procedure can typically be achieved through one or two comparatively small incisions (thoracotomies) in the chest.
Despite these advantages, the beating-heart CABG procedure is not widely practiced, in part, because of the difficulty in performing the necessary surgical procedures with conventional instruments while the heart is still beating. If specially designed instruments were available so that the CABG procedure could more easily be performed on the beating heart, the beating-heart CABG procedure would be more widely practiced and the treatment of cardiovascular disease would be improved in a significant part of the cardiovascular disease patient population.
Since the “beating-heart” CABG procedure is performed while the heart muscle is continuing to beat or contract, an anastomosis is difficult to perform because the blood continues to flow and the heart continues to move while the surgeon is attempting to sew the graft in place. The surgical procedure necessary to install the graft requires placing a series of sutures through several extremely small vessels that continue to move during the procedure. The sutures must become fully placed so that the graft is firmly in place and does not leak. It is also important that the procedure be performed rapidly because the blood flow through the artery may be interrupted or reduced during the procedure to allow the graft to be installed. This can cause ischemia, which should be minimized. Also, the surgeon's working space and visual access are limited because the surgeon may be working through a small incision in the chest or may be viewing the procedure on a video monitor, such that the site of the surgery is viewed via a surgical scope.
The “beating-heart” CABG procedure could be greatly improved if the surgeon's working space and visual access to the heart and the IMA were increased and improved. Current methods to increase and improve the surgeon's working space and visual access include laterally spreading or retracting the ribs with a conventional rib spreader/retractor, and then vertically displacing one of the retracted ribs relative to the other retracted rib to create a “tunnel.” under the rib cage. To vertically displace one of the retracted ribs, some force external to the rib spreader must be applied to the rib. Typically, a surgeon's assistant will push or pull upwardly on the rib with a device having a rib blade inserted under the rib. However, the surgeon's assistant must then hold the rib in a vertically displaced position for the duration of the IMA dissection, resulting in an undesirable addition of another set of hands around the surgical area.
Another method used by surgeons to vertically displace the retracted rib is to insert a rib blade under the retracted rib and then attach the rib blade to a winch located above the patient. The winch is then operated to pull upwardly on the rib and hold it in a vertically displaced position. However, it is not at all uncommon for the patient to be raised off the operating table by the winch. This is undesirable because if the rib begins to crack or break, the weight of the patient's body will cause the rib to continue to break until the patient reaches the operating table.
While using these methods to vertically displace one of the retracted ribs,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Access platform for internal mammary dissection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Access platform for internal mammary dissection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Access platform for internal mammary dissection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3345188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.