Access network

Optical: systems and elements – Deflection using a moving element – Using a periodically moving element

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

359110, H04B 1020, H04B 1400

Patent

active

059204109

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to a telecommunications access network, and in particular to an optical fibre telecommunications access network.
2. Related Art
In the United Kingdom, the telecommunications network includes a trunk network which is substantially constituted by optical fibre, and a local access network which is substantially completely constituted by copper pairs. Flexibility in the copper access network is provided at two points en route to the customer; firstly, at street-side cabinets serving up to 600 lines; and secondly, at distribution points (DPs) serving around 10-15 lines. Eventually, it is expected that the entire network, including the access network, will be constituted by fibre.
The ultimate goal is a fixed, resilient, transparent telecommunications infrastructure for the optical access network, with capacity for all foreseeable service requirements. One way of achieving this would be to create a fully-managed fibre network in the form of a thin, widespread overlay for the whole access topography, as this would exploit the existing valuable access network infrastructure. Such a network could be equipped as needs arise, and thereby could result in capital expenditure savings, since the major part of the investment will be the provision of terminal equipment on a `just in time` basis. It should also enable the rapid provision of extra lines to new or existing customers, and flexible provision or reconfiguration of telephony services.
In order to be future proof, the network should be single mode optical fibre, with no bandwidth limiting active electronics within the infrastructure. Passive optical networks (PONs) offer total transparency and freedom for upgrade.
The most common optical network is the simplex single star, with point-to-point fibre for each transmit and receive path, from the exchange head end (HE) to the customer network terminating equipment (NTE). This network design involves high fibre count cables, and unique electro-optic provision at HE and NTE for each customer. The resulting inherent cost can only be justified for large business users, who generally also require the security of diverse routing, which increases the cost still further.
The advent of optical splitters (power dividers) allows the power transmitted from a single transmitter to be distributed amongst several customers, thereby reducing and sharing the capital investment. In 1987, BT demonstrated this technology in a system for telephony on a passive optical network (TPON), with a 128-way split and using time division multiplex (TDM) running at 20 Mb/s. This combination enabled basic rate integrated service digital network (ISDN) to be provided to all customers. In practice, the competitive cost constraint of the existing copper network precludes domestic customers from having just telephony over fibre, due to the high capital cost of equipment. This may change in the future. In the meantime, telephony for small business users (for example those having more than 5 lines) can probably break this barrier.
The wider range of services and higher capacity required by business customers makes a 32-way split more attractive for a 20 Mb/s system, and this has been demonstrated by BT's local loop optical field trial (LLOFT) at Bishop's Stortford.
In summary, the use of splitter-based PON architecture will reduce the cost of fibre deployment in the access network. When compared with point-to-point fibre, savings will result from: equipment and service provision.
Additionally, PON architecture can be tailored to suit the existing infrastructure resources (duct and other civil works).
Total network transparency will retain the option for future services to be provided on different wavelengths to the telecommunications, which for TPON is in the 1300 nm window. By transmitting at other wavelengths, other services, such as broadband access for cable television and high definition television, or business services, such as high bit rate data, video telephony or video c

REFERENCES:
patent: 5615036 (1997-03-01), Emura
Abiven et al, "Molene:Systeme de Distribution d'acces a 2Mbit/s sur reseau optique passif", Commutation et Transmission, vol. 14, No. 4, 1992, Paris, Fr, pp. 27-34, XP328635.
Lecroq, "Satflex 2:equipements pour reseaux optiques flexibles", Commutation et Transmission, vol. 15, No. 1, 1993, Paris, Fr, pp. 11-18, XP345516.
Berlinet, "Researux optiques flexibles", Commutation et Transmission, vol. 15, No. 1, 1993, Paris, Fr, pp. 5-10, XP345515.
Imai et al, "A Study on Subscriber Optical Line-Switching Networks", Electronics and Communications in Japan, vol. 74, No. 10, Oct. 1991, New York, US, pp. 25-36, XP303551.
Sankawa et al, "A Study on Subscriber Optical Fiber Switching Networks", Journal of Optical Communications, vol. 13, No. 4, Dec. 1992, Berlin De, pp. 150-155, XP278867.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Access network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Access network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Access network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-903508

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.