Communications: electrical – Selective – Intelligence comparison for controlling
Reexamination Certificate
2001-02-02
2002-05-07
Horabik, Michael (Department: 2635)
Communications: electrical
Selective
Intelligence comparison for controlling
C342S457000, C701S035000
Reexamination Certificate
active
06384709
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to an access control system for a mobile platform, such as a transportation vehicle (e.g., aircraft, trailer truck), cargo container, and the like, and which is operative to prevent access to or operation of the mobile platform, unless the platform has been transported to a prescribed geographical location. Security access control is effected by means of an electronic lock, which can be unlocked only by means of an enabled programmable electronic key containing destination geographical location data. To enable the electronic key, its stored location data must be verified by a geographical position detection system associated with the mobile platform.
BACKGROUND OF THE INVENTION
One of the most prevalent of what are often (erroneously) referred to ‘victimless’ crimes is cargo theft. Worldwide industry theft losses for cargo theft in 1995 were approximately $470 billion, and an additional $400 billion was lost to a multitude of cunning and deceptive fraud schemes. Between hijackings and internal fraud, the cost to business has reached such epidemic proportions, that the insurance industry has estimated that cargo theft losses now account for $150 of the retail price of every personal computer. As a consequence, insurance premiums and deductibles are rising at an alarming rate. While insurance company payouts can replace stolen goods, the loss of business from clients forced to buy from someone else might never be replaced. Also, even though enforcement agencies have begun forming task forces to deal with the problem, most of their responses have been reactive rather than proactive; law enforcement and private industry have realized that they must work together to solve the problem.
For this purpose, a very basic procedure has been to simply lock the doors of cargo containers and vehicles; however, such locking of truck/cargo carriers has not provided adequate protection, as industry experts point out as much as 80% of cargo theft is the result of insiders with keys to the truck/carrier storage units. It has been concluded that the only effective measure to secure cargo is to employ a measure that will assure that the truck or carried storage unit cannot be opened between its departure location and its intended destination.
One proposal to address this problem, described in the Long U.S. Pat. No. 5,648,763, is to equip the cargo container/vehicle with a geographical position detection unit (such as a Global Positioning System (GPS)-based unit) that is directly connected to the locking mechanism for the container, and prevents the container's locking system from being compromised/opened during transit. For this purpose, the geographical position detection unit functions to maintain the security access control system for the container (a solenoid-driven lock) in a locked or secure state, until it detects that the container has arrived at its intended destination. At this point, the geographical position detection unit issues an unlock signal to the locking mechanism and allow access to the container.
A fundamental shortcoming with of approach is the fact that the security access control system and its associated geographical position detection equipment (such as a Global Positioning System (GPS)-based unit), which may typically be installed in or adjacent to the cab of a truck, or within the container proper where the cargo is stored, is directly linked with the hardware of the mechanical locking unit for the vehicle/cargo container doors at the rear of the truck. The fact that the two are directly linked through or along the confines of the truck where cargo is stored, and the substantial physical separation therebetween creates the potential for damage or compromise of the control link between the security access control unit and the lock. In addition, in the patented system, all of the security access control information, including the critical geographical location information, is programmed into the security access control system. Since the security access control system is resident in equipment permanently installed in the container/vehicle, programming the geographical location information must be physically carried out ‘in the truck’.
SUMMARY OF THE INVENTION
In accordance with the present invention, these drawbacks are effectively obviated, and additional security and functionality are provided by means of a new and improved geographical position-based electronic lock and key system. This system contains a programmable electronic lock which can be unlocked only by means of a programmable electronic key, into which geographical location data of the destination site of interest has been programmed externally of the mobile platform, such as a tractor trailer cargo enclosure, and which remains disabled until it has been verified that the mobile platform has arrived at its destination site.
Once the mobile platform has arrived at its destination site, the electronic key is inserted into a location verification comparator unit, that is coupled to a geographical position detection system for the mobile platform. If the two sets of geographical location data match, the key becomes enabled for a prescribed interval of time (e.g., five minute), that allows it to operate the electronic lock and thereby provide access to the container/vehicle. Providing such a time-limited enabling of the key prevents a driver from obtaining an enabled key at the authorized destination site and then driving the vehicle to another illegal location and opening and unloading the cargo container at that point.
Preferably, the electronic lock and key are of the type described in U.S. Pat. Nos. 5,337,588 and 5,625,349 (hereinafter referred to as the '588 and '349 patents, respectively), each containing its own individually programmable control processor, and employing encrypted, scrambled (opto-electronic) communications for increased security.
The security access control system includes a geographical position detection subsystem, such as, but not limited to a Global Positioning System (GPS)-based, LORAN-based or other equivalent navigation—geographical coordinate locating unit, to which a position location subsystem receiver is coupled. The subsystem is preferably installed in or adjacent to the cab of the truck, so that it is physically isolated from the cargo container, and therefore not subject to being impacted or otherwise affected by the contents of the cargo container.
The GPS receiver is coupled to supply geographic coordinate position data to an electronic key-receiving interface, that contains a keyway configured to provide communication capability with a programmable electronic key. The keyway and the GPS receiver are coupled to a signal processing unit that includes microprocessor, digital and analog signal processing components of the electronic lock and key system described in the above-referenced '349 patent. The interface reads geographical position data provided in real time by the GPS receiver, which is compared with the geographical position data stored in memory of the programmable key.
Writing geographical location data into a key is carried out using a further electronic key-receiving interface associated with digital terminal equipment located at a transportation control site, such as a point of origin supervisory dispatch center. Like the interface of the GPS receiver signal processing subsystem within the container transport vehicle, the key-programming interface contains a keyway provides communication capability between the programmable electronic key and a control processor, through which a terminal operator may program prescribed access control information into a key that has been inserted into the terminal equipment's interface.
Through his terminal, the dispatch operator may program one or more of permission use parameters described in the '349 patent, and also enter geographical position data associated with the destination location of the cargo container, access to which is to be contro
Disbrow James E.
Finney Carl
Mellen Michael
Roesch James
Wagner William E.
Allen Dyer Doppelt Milbrath & Gilchrist, P.A.
Bangachon William L
Horabik Michael
Intellikey Corporation
LandOfFree
Access control system for mobile platform using electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Access control system for mobile platform using electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Access control system for mobile platform using electronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2855256