Chemistry: electrical and wave energy – Processes and products – Electrostatic field or electrical discharge
Reexamination Certificate
2001-01-30
2002-11-05
Mayekar, Kishor (Department: 1741)
Chemistry: electrical and wave energy
Processes and products
Electrostatic field or electrical discharge
C422S186040, C361S234000, C279S128000, C427S002140, C118S624000, C118SDIG002
Reexamination Certificate
active
06475351
ABSTRACT:
The present invention is directed to devices for electrically picking up and dispensing grains in a spatially resolved manner. Specifically, this disclosure describes novel operation techniques and bead attraction electrode biasing for bead transporter chucks. The invention provides for the application of dynamic electric fields, such as those obtained using periodic pulses or other AC waveform components, to bead attraction electrodes in lieu of quasi-static electric fields that were used previously to attract grains in bead manipulating chucks. These dynamic potentials can be used not only for attracting and retaining grains, but in grain deposition sensing by measuring accumulated charge.
Electrostatic bead transporter chucks may be used to pick up, manipulate, transport, and then discharge or place grains or objects for use in creating pharmaceutical, diagnostic or chemical compositions, or in performing assays or chemical analysis.
Bead transporter chucks act as clamps to hold or retain an object or objects. Bead transporter chucks provide superior performance for manipulating grains, such as beads with diameters of 100-300 microns in chemical synthesis, such as combinatorial chemistry for solid phase synthesis, or in an assay using PCR (polymerase chain reaction) or other materials such as powders, such as can be used to deposit pharmaceuticals on a substrate.
For example, bead transporter chucks allow deposition of grains on an array in a manner that is faster and more reliable than by the use of micropipettes, which can be inefficient, tedious, and time consuming. Another application for bead transporter chucks is synthesis of pharmaceutical compositions, especially when used to combine compounds to form compositions to be packaged into administration forms for humans or animals.
Grains containing one or more active ingredients may be deposited onto well known carriers or substrates to make pharmaceutical dosage forms. Such grains may take the form, for example, of [1] a powder, such as dry micronized forms made by air jet milling processes; [2] microspheres; [3] extremely small structures, including fullerenes, chelates, or nanotubes; or [4] liposomes and fatty droplets formed from lipids or cell membranes.
The use of bead transporter chucks provides a customized and precise method for formulating drug compositions. The transporter can be used when merging adjacent substrates carrying active ingredient to form multidosage packs, in which dosage may decrease or increase from one individual unit to the next, as in hormone-based (e.g., birth control) drugs or antibiotic remedies. Using an electrostatic bead transporter chuck, dosages may be easily established or determined by the number and/or type of grains dispensed onto each pharmaceutical carrier, or by using electrical, optical, or mechanical dosage sensing. Using bead transporter chucks to place active ingredients into pharmaceutical compositions can give high repeatability and is also advantageous when the active ingredients are not compatible, such as when the active ingredient is poorly soluble with carriers, or where a formulation or carrier negatively affects the bioavailability or stability of the active ingredient.
Although emphasis is placed in this disclosure on use of electrostatic bead transporter chucks that apply electric fields for grain retention and/or release, the teachings given here can be applied to chucks that also use other phenomena, such as the use of compressed gas or vacuum, or electrically/chemically switchable adhesives, in controlling grains and/or substrates. Electrostatic or quasi-electrostatic holding mechanisms, however, are far more benign to delicate grain structures than traditional mechanical techniques, particularly when manipulating biologically active compounds where crushing, contamination, or oxidative damage must be minimized or eliminated.
The present invention can involve use of acoustic stimulation or acoustic dispensers, where acoustic energy, provided by a speaker or piezoelectric device, is used to great advantage in grain control, that is, propelling and/or tribocharging grains prior to, and especially during, electrostatic manipulation. Tribocharging grains, as known in the art, and described below, is more efficient and less damaging to the grains than corona or plasma charging, which typically requires high applied voltages of around 5 kV. Often, the sonically vibrating membrane or mesh used in such an acoustic grain dispenser can itself be used to tribocharge the particles, eliminating the need to charge the grains prior to their entry into the acoustic dispenser. The use of acoustic dispensers allows polarity discrimination of grains, where wrongly charged grains are discouraged from being retained by the bead transporter chuck. Other forms of charging and dispensing the grains can be used, such as those described in U.S. application Ser. No. 09/09/095,246, filed Jun. 10, 1998. This concurrently filed application describes grain feed systems that use augers, jet mills or fluidized beds, gas-driven Venturi, and induction charging in grain feed tubing.
Many bead transporter chucks offer precision in being able to have one, and only one grain attracted, transported, and discharged for each bead transporter chuck, or for each well, pixel, or individual spatial element of the bead transporter chuck. In many cases, each pixel can be considered a tiny bead transporter chuck that is selectively and independently controlled, such as planar chucks having individually addressable x and y coordinates. This includes individually addressable pixels for different (multiple) grain types.
Grains manipulated by these bead transporter chucks (or bead manipulating chucks) can be easily and controllably releasable, with wrongly charged grains (objects or grains having a charge of the opposite polarity desired) not occupying bead retaining or collection zones on the bead transporter chuck. They function well for a wide range of grain diameters, including grains with general dimensions of 100 microns and up, grains of much smaller dimensions, and also including porous or hollow grains that have high charge/mass ratios. They also offer durability and re-usability, and good ease-of-use, including having selectively or wholly transparent elements for easy movement and alignment of the chuck with intended targets or carriers.
Often, instead of depositing grains singly, bead transporter chucks are used to attract and place powder, such as powder containing active ingredient, on a substrate, such an edible substrate used for pharmaceutical dosage forms.
Electrodes used for attracting grains can be directly exposed, or covered by a dielectric, to prevent ionic breakdown (sparking) in air and to make use of the properties of dielectric to enhance grain holding capacity. To control the amount of charged grains that may be attracted, an indirect method can be used where an attraction electrode is not used directly to attract grains—but rather is used to capacitively couple, as discussed below, to a pad or floating electrode. This floating electrode then develops image charges partly in response to the field generated by the bead electrode, and its operation is self limiting in that it can only serve to attract a finite amount of charge before the potential it generates is cancelled. This indirect charging method can be more gentle, more precise, and less expensive to implement than charging by corona discharge, particularly for high resolution applications. The instant invention can be applied to any number of bead transporter chuck designs, but for illustration purposes, the chuck shown here attracts grains indirectly by way of one or more floating electrodes. Other useful electrode designs are illustrated in U.S. application Ser. No. 09/095,246, filed Jun. 10, 1998. Further techniques employed for precise dosage control include the use of sensing electrodes used for grain deposition sensing. Sensing electrodes can be thought of as equivalent to bead t
Desai Nitin Vithalbhai
Puliniak Eugene Samuel
Rosati Dominic Stephen
Singh Bawa
Sun Hoi Cheong
Dechert
Delsys Pharmaceutical Corporation
Mayekar Kishor
LandOfFree
AC waveforms biasing for bead manipulating chucks does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with AC waveforms biasing for bead manipulating chucks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and AC waveforms biasing for bead manipulating chucks will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2922922