Refrigeration – Refrigeration producer – Sorbent type
Reexamination Certificate
2002-08-05
2003-12-02
Doerrler, William C. (Department: 3744)
Refrigeration
Refrigeration producer
Sorbent type
C062S483000, C062S484000, C062S487000, C062S488000, C062S491000, C062S492000, C062S494000
Reexamination Certificate
active
06655171
ABSTRACT:
The invention pertains to an absorption cooling device for operating a thermodynamic cooling circulation such that the cooling circuit takes heat from a space to be cooled. Such a cooling device traditionally e.g. is used for cooling down a refrigerator section of a household refrigerator or the like as compared to an environment.
In a cooling device operated under the traditional so-called absorption method a working substance, in most cases ammonia soluble in a solvent, mostly water, is applied in the circuit. This circuit includes an expeller also referred to as cooker or pump, a condenser, an evaporator and an absorber. In the expeller the working agent out of solvent enriched with the working agent is expelled with supply of external energy by e.g. a radiator. In gaseous condition the working agent is transferred from the expeller to the condenser where the working agent conveys heat to the environment, cools down and finally condenses. The condensed working agent is transferred from the condenser to the evaporator where it evaporates with absorbing heat on a low level, e.g. in the evaporator of a refrigerator, and in gaseous condition is transferred to the absorber. In the absorber the working agent is absorbed in the solvent under emission of heat and then is returned to the expeller in a form dissolved in the solvent, the described working agent circuit being closed thereby.
Since the transport of the working agent from the absorber to the expeller is effected in a form dissolved in the solvent and the solvent which due to the effect of the expeller is enriched in working agent, again is transferred to the absorber for there being enriched with working agent a so-called solvent circuit exists between expeller and absorber.
In the solvent circuit solvent loaded with working agent in liquid form is fed to the expeller via a connecting line or similar, the connecting line being connected to a reservoir subsequent to the absorber. Using this reservoir the working agent can be filled into the working agent circuit. Due to gravity the solvent accumulates as liquid volume in the reservoir, wherein in correspondence to the amount of solvent volume a liquid level or a liquid surface, respectively, of said solvent volume is formed. Below said liquid level the solvent exists in liquid form together with the working agent dissolved therein, while above said liquid level a gas atmosphere is existent of gaseous solvent, working agent and, if applicable, an assistant gas for operation of the working agent circuit and further gases.
To the described liquid volume the solvent enriched with working agent is supplied from the absorber, the solvent enriched with working agent penetrating the liquid level as continuous trickle or drop-by-drop and thus merging into the liquid level existing on low level. The reservoir, therefore, does not only takes in a substantial portion of the working medium in order to keep it on store for the working agent circuit but also makes available absorber surface for a residual absorption for the circuit by the enlarged surface. Finally, it serves as level balance for the filling level in the expeller and establishes the connection of expeller, evaporator, absorber and, if applicable, condenser as well as siphon pipe.
In spite of the fact that the known apparatus per se works satisfactorily, it nevertheless turned out that the construction comprises drawbacks due to system and construction. Thus, a large portion of the working medium is stored in the reservoir without functional effect for step by step being supplied to the expeller. A substantial portion of the liquid in the reservoir does not participate in the proper absorption but only serves for a residual absorption in insufficient degree. By the functional separation of the working medium into an active and inactive portion a substantial demand for a larger total volume of coolant is given, this resulting in an increased portion of ecologically noxious ammonia and chromate portions, which also cause problems in terms of waste disposal. Finally, the above-described apparatus requires an expensive constructional harmonization between the reservoir and the expeller in order to make available a suitable liquid level. For receiving a large liquid volume and for making available a large absorption and cooling surface the reservoir must be of large volume and, therefore, beside its terminals for the different components of the unit like absorber, evaporator, expeller and condenser, siphon pipe and filling valve comprises numerous welding seam connections so that the danger of leakages is increased.
The invention, therefore, is based on the object of improving an absorption cooling device of the known kind such that with equal cooling power reduced storing of coolant is required and, thus, simultaneously waste disposal expense is reduced. Said device in addition is to require lower constructional expense and be cheaper manufacturable with lower weight at the same time.
The invention herein starts on an absorption cooling device with
an expeller for expelling a working agent in gaseous form of enriched solvent for depleting said working agent in a solvent circuit,
a first connecting line for transferring the expelled working medium from said expeller to a condenser for condensing said expelled working agent,
a second connecting line for transferring said condensed working agent from said condenser to an evaporator for evaporating said condensed working agent with absorption of heat from a surface to be cooled,
a third connecting line for transferring said evaporated working agent from said evaporator to an absorber unit,
a fourth connecting line for transferring said solvent depleted of working agent from said expeller to said absorber unit, wherein said absorber unit comprises a counterflow exchange path extending over a predefined level difference, into which ends said third connecting line on a low level and into which ends said fourth connecting line on a high level so that said working agent in said solvent enriches in said absorber unit,
a fifth connecting line for transferring said solvent enriched with working agent from said absorber to said expeller.
Herein, at least a part of said fifth connecting line is filled with a liquid portion of said solvent and in an area of the end of said fifth connecting line, facing said expeller or in said expeller itself a first liquid level of said solvent is formed, a corresponding second liquid level communicating with said first liquid level through said fifth connecting line being formed.
A first aspect of the invention is based on the conception of dimensioning the total surface of said second liquid level comparatively small and of reducing the total volume of said working agent in that only an active portion of said working agent is used in the absorption process and not an inactive portion is used for storing. As will be explained later, thereby the constructional leveling of said liquid level to said expeller can be achieved in simple manner. The system only must be filled with the amount of working medium (ammonia, water, inhibitor) required for creating said absorption process. This results in the advantages that the amount of operating substances
oxious matter ammonia, water, corrosion inhibitor is reduced and thus also the problems created in connection with a later waste disposal (costs, danger potential) are reduced. By a smaller total volume costs and weight can be saved and by the direct introduction of the absorbing working medium into the heat exchanger the corresponding absorption heat is utilized better. Finally, operating safety (resistance to pressure) is increased in that in relation to traditional absorption cooling devices less welding connections are used.
In case of smaller embodiment of said total surface of said second liquid level an amount of solvent enriched with working agent, directly supplied from said absorber to at least a part of said total surface causes a comparatively large change of working agent concentration in said solve
Doerrler William C.
Dometic GmbH
Zec Filip
LandOfFree
Absorption cooling device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Absorption cooling device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absorption cooling device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3127645