Absorbant pad for applying anti-coagulant

Cleaning and liquid contact with solids – Processes – Using solid work treating agents

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S034000, C134S042000, C510S363000, C510S438000, C510S439000

Reexamination Certificate

active

06834657

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates, generally, to means for applying an anti-coagulant to intravenous devices, needles, and operating room surfaces. More particularly, it relates to an anti-coagulant-containing pad and to methods for using the pad.
2. Description of the Prior Art
Heparin-quaternary ammonium compounds have been used for many years as non-thrombogenic coatings for catheters. The advent of nonionic intravenous contrast media has increased interest in the use of this material due to the lack of any of the antithrombogenic activity demonstrated by ionic contrast media. Heparin acts as an anti-coagulant, increasing the time a catheter or stent can remain inserted in the body without danger of a blood clot occluding or causing other problems with the procedure. Excessive amounts of heparin hemolyse (break apart) red blood vessels. Many catheters are now pre-coated by catheter manufacturers using the concentrations mentioned below.
Heparin coatings have been applied to catheters made with polyethylene, polyurethane, Teflon®, nylon, vinyl, and to stainless steel and Teflon-coated guidewires.
Additional uses for heparin coatings include vascular stents, tubing for heart-lung bypass machines, indwelling catheters and drains, renal dialysis tubing, and cell saver tubing.
Pre-coating of catheters is usually achieved by dipping the device into a coating solution, evaporating the solvent, which may be isopropyl alcohol, or other suitable solvent, and packaging the device.
Dipping catheters and other devices creates a thick coating. Some of these coatings can be thick enough to occlude small-bore catheters. The FDA has recalled some small bore catheters for this reason. Moreover, the coatings become brittle with age and may flake off, thereby reducing the shelf-life of such devices.
Thus a need exists for an improved method for coating catheters, stents, and other medical devices with an anti-coagulant in a way that does not occlude small bore catheters. The improved method should also extend the shelf-life of a coated device.
Nuclear pharmacies load brachytherapy needles with radioactive seeds and send such needles to hospitals for implantation of the seeds into the prostate glands of prostate cancer patients. From time to time, not all of the seeds are implanted and the hospital returns the bloodied needle containing unused seeds to the nuclear pharmacy that supplied the needle and seeds for proper radioactive material disposal. This is problematic because mixed waste (biohazardous and nuclear) is being sent through the mail. Moreover, the nuclear pharmacy may not be licensed to handle such mixed waste materials. Most nuclear pharmacies are not so licensed. An improved means is therefore needed for cleaning blood from needles.
Drapes and sheets are used to absorb blood from surgical procedures. Blood is the most common contaminate of stainless steel trays, surgical room floors, surgical table pedestals, etc. The cleanup process after an operation is extremely important. Current methods for cleaning and decontamination include the use of biocides and hand-scrubbing of surfaces to remove blood splatter or clotted pools of blood. The cleaning and disinfecting must be thorough and completed before the operating room is used again. Current methods of scrubbing down the operating room and removing blood residue therefrom are time-consuming, labor-intensive, and subject to failure if the workers are insufficiently fastidious in their approach to the job.
An improved method is therefore needed to remove blood and other contaminates from operating rooms, stainless steel trays, and other surfaces.
U.S. Pat. No. 6,488,943 to Beerse et al. discloses antimicrobial wipes that provide improved immediate germ reduction. The disclosure does not address the treating of medical devices with anti-coagulants or the removal of blood from needles or other surfaces. Similarly, U.S. Pat. No. 6,489,284 to Suazon et al. discloses a dishwashing cleaning wipe including a single layer needle punched fabric wherein the fabric is impregnated with a cleaning composition. U.S. Pat. No. 6,429,183 discloses a cleaning wipe that includes a nonwoven fabric that is impregnated with an antibacterial composition.
In view of the prior art considered as a whole at the time the present invention was made, it was not obvious to those of ordinary skill in the pertinent art how the identified needs could be met.
SUMMARY OF THE INVENTION
The long-standing but heretofore unfulfilled need for means for repairing the H-BAC coating on a catheter, stent, or other intravenous device, for cleaning needles, and for decontaminating surfaces is now met by a new, useful, and nonobvious invention.
The novel method for enhancing or repairing an anti-coagulant coating on a medical device such as a catheter or stent includes the steps of providing a sterile, absorbent, soft, lint-free and at least slightly abrasive pad. An anti-coagulant in a solvent is applied to the pad and the pad is packaged in a sterile pouch to prevent evaporation of the solvent or deterioration of the anti-coagulant. The pouch is opened when a medical device that may or may not have an H-BAC coating is to be inserted into a mammalian body. The device, which may be a catheter, a stent, or the like, is wiped with the pad to apply the anti-coagulant thereto. If the medical device was previously coated with an anti-coagulant, the wiping of said device with the at least slightly abrasive pad removes cracked or loose anti-coagulant coating from the device and deposits another coating of the anti-coagulant onto the device. This repairs and rejuvenates the device and facilitates subsequent coatings as well.
In a second novel method, a needle is decontaminated. A sterile, absorbent, soft, lint-free and at least slightly abrasive pad is provided and an anti-coagulant in a solvent is applied to the pad. The pad is packaged in a sterile pouch to prevent evaporation of the solvent or deterioration of the anti-coagulant. The pouch is opened when a needle is to be decontaminated after having been inserted into a mammalian body. The needle is wiped with the pad to apply the anti-coagulant to the needle. The wiping process removes blood from the needle.
In a third novel method, surfaces that may come into contact with blood are decontaminated by providing a sterile, absorbent, soft, lint-free, and at least slightly abrasive pad. An anti-coagulant in a solvent is applied to the pad and the pad is packaged in a sterile pouch to prevent evaporation of the solvent or deterioration of the anti-coagulant. The pouch is opened when blood is to be removed from a surface. The surface is wiped with the pad to apply the anti-coagulant to the surface. The at least slightly abrasive pad removes cracked or loose anti-coagulant coating that may have been on the surface and deposits another coating of the anti-coagulant to the surface to facilitate future cleaning of the surface.
In all three novel methods, the preferred anti-coagulant is heparin-benzalkonium chloride. In a preferred formulation, the heparin-benzalkoniun chloride is formulated in a solution of 1.5% heparin-benzalkonium chloride (wt/vol) in a preselected solvent and the solution contains 850 USP heparin units/ml. The solvent is preferably isopropyl alcohol.
An important object of this invention is to provide methods for repairing medical devices that are pre-coated with an anti-coagulant and for re-coating said devices with an anti-coagulant just prior to their use.
Another important object is to provide a method for cleaning a needle after use.
Another important object is to provide a method for decontaminating surfaces such as surgical room floors, trays, and other items in an operating room in a way that is faster and more effective than conventional decontamination methods.
These and other important objects, advantages, and features of the invention will become clear as this description proceeds.
The invention accordingly comprises the features of construction, combination of element

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Absorbant pad for applying anti-coagulant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Absorbant pad for applying anti-coagulant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absorbant pad for applying anti-coagulant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3291783

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.