Absorbable polymers and surgical articles fabricated therefrom

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S359000, C525S408000, C525S411000, C525S413000, C525S415000, C606S075000, C606S077000, C606S151000, C606S219000, C606S224000, C606S228000, C606S230000, C606S231000, C264S176100, C264S17800F, C264S208000, C264S211140, C264S211170, C128S897000, C128S898000

Reexamination Certificate

active

06235869

ABSTRACT:

TECHNICAL FIELD
Absorbable polymers of randomly polymerized glycolide, lactide, trimethylene carbonate, and caprolactone are described. Processes for making the polymers and surgical articles made totally or in part from such polymers, including sutures, are also described.
BACKGROUND
Bioabsorbable surgical devices made from copolymers derived from glycolide and epsilon-caprolactone are known in the art. Such bioabsorbable surgical devices include surgical sutures.
A desirable characteristic of a bioabsorbable suture is its ability to exhibit and maintain desired tensile properties for a predetermined time period followed by rapid absorption of the suture mass (hereinafter “mass loss”.)
Synthetic absorbable sutures are known in the art. Absorbable multifilament sutures such as DEXON sutures (made from glycolide homopolymer and commercially available from Davis & Geck, Danbury, Conn.), VICRYL sutures (made from a copolymer of glycolide and lactide and commercially available from Ethicon, Inc., Sommerville, N.J.), and POLYSORB sutures (made from a copolymer of glycolide and lactide and commercially available from United States Surgical Corporation, Norwalk, Conn.) are known in the industry as short term absorbable sutures. The classification short term absorbable sutures generally refers to surgical sutures which retain at least about 20 percent of their original strength at three weeks after implantation, with the suture mass being essentially absorbed in the body within about 60 to 90 days post implantation.
Long term absorbable sutures are generally classified as sutures capable of retaining at least about 20 percent of their original strength for six or more weeks after implantation, with the suture mass being essentially absorbed in the body within about 180 days post implantation. For example, PDS II sutures (commercially available from Ethicon, Inc., Sommerville, N.J.), are synthetic absorbable monofilament sutures that reportedly retain at least about 20 to 30 percent of their original strength six weeks after implantation. However, PDS II reportedly exhibits minimal mass loss until 90 days after implantation with the suture mass being essentially absorbed in the body about 180 days after implantation. MAXON suture (commercially available from Davis & Geck, Danbury, Conn.) is another absorbable synthetic monofilament that reportedly generally fits this absorption profile.
Recently, United States Surgical Corporation has introduced BIOSYN monofilament sutures which exhibit good flexibility, handling characteristics, knot strength and absorption characteristics similar to those of presently available short term absorbable multifilament sutures.
Another attempt to provide an acceptable synthetic absorbable monofilament sutures resulted in MONOCRYL, a suture fabricated from an absorbable block copolymer containg glycolide and epsilon-caprolactone, commercially available from Ethicon, Inc.
However, no synthetic absorbable monofilament sutures exist today which approximate the strength retention, mass loss, and modulus of sutures commonly referred to in the art as “catgut” or “gut” sutures. It is well known in the art that the term gut suture refers to a collagen based suture of any type or origin often fabricated from the mammalian intestines, such as the serosal layer of bovine intestines or the submucosal fibrous layer of sheep intestines. Gut sutures exhibit the unique combination of two week strength retention and about 75 day mass loss while maintaining acceptable modulus and tensile strength; and thus are still widely used in gynecological surgery.
It would be advantageous to provide a synthetic absorbable suture which exhibits physical properties similar or superior to the gut suture.
U.S. Pat. No. 4,700,704 to Jamiolkowski does teach that sutures can be fabricated from random copolymers of glycolide and epsilon-caprolactone, and more specifically from random copolymers containing from 20 to 35 weight percent epsilon-caprolactone and from 65 to 80 weight percent glycolide. Moreover, Jamiolkowski reports that sutures fabricated from glycolide/epsilon-caprolactone copolymers containing over 35% caprolactone are not orientable to a dimensionally stable fiber. Jamiolkowski further reports that some sutures fabricated from glycolide/epsilon-caprolactone copolymers containing 15% caprolactone are also not orientable to a dimensionally stable fiber. Furthermore, Jamiolkowski also reports the undesirable combination of low modulus and low tensile strength for the glycolide/epsilon-caprolactone copolymers which he was able to fabricate into sutures.
U.S. Pat. Nos. 4,045,418 and 4,057,537 disclose random copolymers obtained by copolymerizing lactide and epsilon-caprolactone as well as terpolymers obtained by polymerizing lactide, epsilon-caprolactone, and glycolide. The copolymers as well as the terpolymers disclosed in U.S. Pat. Nos. 4,045,418 and 4,057,537 have at least 60% by weight lactide. These copolymers have been described in the literature as having “one major drawback which has prevented their wide spread use. Although the copolymers can be literally interpreted to be ‘bioabsorbable’, the rate of absorption is so slow that it renders the copolymers practically useless for numerous medical applications” (see U.S. Pat. No. 5,468,253 at column 2, lines 24 et seq.). In fact, U.S. Pat. No. 5,468,253 addresses this problem by disclosing medical devices formed from a random copolymer of: a) from about 30 to about 50 weight percent of epsilon-caprolactone, trimethylene carbonate, an ether lactone and combinations thereof, and b) the balance being substantially glycolide or para-trimethylene carbonate.
Therefore, it would be unexpected that medical devices such as sutures made from random copolymer of glycolide, epsilon-caprolactone, trimethylene carbonate, and lactide would provide the strength retention and mass loss characteristics approximating those of gut sutures while maintaining an acceptable modulus and tensile strength.
SUMMARY
It has now surprisingly been found that absorbable surgical articles formed from a random polymer of glycolide, caprolactone, trimethylene carbonate and lactide exhibit strength retention, mass loss and modulus similar to that of gut sutures. In one embodiment, the polymers used in forming surgical articles include between about 12 and about 17 weight percent of units derived from caprolactone, about 5 to about 8 weight percent of units derived from trimethylene carbonate, between about 68 and 75 weight percent of units derived from glycolide, and between about 5 to about 8 weight percent of units derived from lactide. In another embodiment, the polymers used in forming surgical articles include between about 12 and about 17 weight percent of units derived from caprolactone, about 1 to about 19 weight percent of units derived from trimethylene carbonate, between about 68 and 75 weight percent of units derived from glycolide, and between about 1 to about 19 weight percent of units derived from lactide.
In particularly useful embodiments, the random polymers can be spun into fibers. The fibers can be advantageously fabricated into either monofilament or multifilament sutures having physical properties similar to those of gut sutures.
In addition, a process of making such synthetic absorbable monofilament sutures from the above described trimethylene carbonate/caprolactone/glycolide/lactide random polymers has been found. The process, for a given size suture, comprises the operations of extruding the random caprolactone/glycolide/trimethylene carbonate/lactide copolymer at an extrusion temperature of from about 140° C. to about 180° C. to provide a monofilament fiber, passing the solidified monofilament through water (or other suitable liquid medium) quench bath at a temperature of from about 15° C. to about 25° C. or through air (or other suitable gaseous medium) at from about 15° C. to about 25° C., stretching the monofilament through a series of air ovens at an overall stretch ratio of from about 8:1 to about 11:1 to provide a stretched monofi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Absorbable polymers and surgical articles fabricated therefrom does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Absorbable polymers and surgical articles fabricated therefrom, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absorbable polymers and surgical articles fabricated therefrom will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442082

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.