Absorbable implantable vaso-occlusive member

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001110

Reexamination Certificate

active

06585754

ABSTRACT:

FIELD OF THE INVENTION
Compositions and methods for repair of aneurysms are described. In particular, completely or almost completely absorbable vaso-occlusive members are disclosed, as are methods of making and using these members.
BACKGROUND
An aneurysm is a dilation of a blood vessel (similar to a balloon) that poses a risk to health from the potential for rupture, clotting, or dissecting. Rupture of an aneurysm in the brain causes stroke, and rupture of an aneurysm in the abdomen causes shock. Cerebral aneurysms are usually detected in patients as the result of a seizure or hemorrhage and can result in significant morbidity or mortality.
There are a variety of materials and devices which have been used for treatment of aneurysms, including platinum and stainless steel microcoils, polyvinyl alcohol sponges (Ivalone), and other mechanical devices. For example, vaso-occlusion devices are surgical implements or implants that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. One widely used vaso-occlusive device is a helical wire coil having windings which may be dimensioned to engage the walls of the vessels. (See, e.g., U.S. Pat. No. 4,994,069 to Ritchart et al.) Other less stiff helically coiled devices have been described, as well as those involving woven braids.
U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al., describe an electrolytically detachable embolic device. Vaso-occlusive coils having little or no inherent secondary shape have also been described. For instance, co-owned U.S. Pat. Nos. 5,690,666 and 5,826,587 by Berenstein et al., describes coils having little or no shape after introduction into the vascular space.
Attempts to increase thrombogenicity of metal coils have also been attempted, for example by modifying the surface of the coil. WO 99/44538 discloses use of GDC coils coated with biodegradable polymers or proteins. U.S. Pat. No. 5,669,931 to Kupiecki discloses coils that may be filed or coated with thrombotic or medicinal material. U.S. Pat. No. 5,749,894 to Engleson discloses polymer coated vaso-occlusion devices. U.S. Pat. No. 5,690,671 to McGurk discloses an embolic element which may include a coating, such as collagen, on the filament surface. U.S. Pat. No. 5,536,274 to Neuss shows spiral implants, some of which are coated with metal particles, silicone, PTFE, rubber latices, or polymers. U.S. Pat. No. 5,980,550 describes a vaso-occlusive device having a bioactive inner coating and a water-soluble outer coating. Co-owned WO/027445, titled “Bioactive Coating for Vaso-occlusive Devices,” describes vaso-occlusive devices coated with a collagen-based material and, additionally, describes the use of a tie-layer between the device and the collagen-based coating.
Liquid embolics, such as cyanoacrylate glues and fibrin sealants, have also been used in animal and human subjects. See, e.g., Interventional Radiology, Dandlinger et al, ed., Thieme, N.Y., 1990:295-313; Suga et al. (1992)
No Shinkei Geka
20(8):865-873; Moringlane et al. (1987)
Surg Neurol
28(5):361-366; Moringlane et al. (1988)
Acta Neurochir Suppl
. (
Wein
) 43:193-197. Of these liquid embolics, cyanoacrylate glues are the only liquid embolics currently available to neurosurgeons. However, chronic inflammation is typically seen with cyanoacrylate treatments (Herrera et al. (1999)
Neurol Med Chir
(
Tokyo
) 39(2):134-139) and the degradation product, formaldehyde, is highly toxic to the neighboring tissues. See, Vinters et al (1995)
Neuroradiology
27:279-291. Another disadvantage of cyanoacrylate materials is that the polymer will adhere both to the blood vessel and to the tip of the catheter. Thus physicians must retract the catheter immediately after injection of the cyanoacrylate embolic material or risk adhesion of the cyanoacrylate and the catheter to the vessel.
WO 00/44306 discloses endovascular apparatuses comprising an at least partially absorbable polymeric or protein coil and a placement device.
None of these documents describe vaso-occlusive members having the characteristics described herein or methods of making such members.
SUMMARY OF THE INVENTION
Thus, this invention includes novel occlusive compositions as well as methods of using and making these compositions.
In one aspect, the invention includes an absorbable vaso-occlusive member comprising: (i) an absorbable material; and (ii) one or more stretch-resistant members fixedly attached to at least two locations of the absorbable material. Non-limiting examples of suitable absorbable materials include polyglygolic acid (PGA), poly-glycolic/poly-L-lactic acid co-polymers, polycaprolactone, polyhydroxybutyrate/hydroxyvalerate copolymers, poly-L-lactide, polydioxanone, polycarbonates, polyanhydrides, collagen, elastin, fibrinogen, fibronectin, vitronectin, laminin, gelatin and combinations thereof.
The vaso-occlusive members described herein can have any three-dimensional shape, including, for example, J-shaped, straight, cylindrical, spherical, tube-like, and helical coil. In certain embodiments, for example where the vaso-occlusive member is configured as a helical coil having a plurality of helical winds, a first end, a second end and lumen between said first and second ends, the stretch-resistant member extends through said lumen of the coil and is attached to said first and second ends. Alternatively, the stretch-resistant member can be threaded through holes, perforations or winds of the three-dimensional member (e.g., threaded through winds of a coil or through perforations of a tube). Furthermore, in any of the vaso-occlusive members described the stretch-resistant member can be attached to the interior or, alternatively, exterior of the members (e.g., helical coil or tube).
In certain embodiments, the stretch-resistant member is non-absorbable. In other embodiments, the stretch-resistant member is absorbable. For example, absorbable stretch-resistant members can be separately added elements or, alternatively, the stretch-resistant member(s) can be formed by modifying the absorbable material, for example by heating or soldering selected locations of the absorbable vaso-occlusive member, e.g., by soldering lines on the exterior or interior of a tube-shaped member or by heating or soldering one or more winds of a helically shaped member to connect at least two of said helical winds. In certain aspects, the stretch-resistant member comprises a mono-filament, for example polypropylene. In other embodiments, the stretch-resistant member is a multi-filament.
Any of the vaso-occlusive members described herein can further comprise a deployment tip, for example attached to at least one of the first end and second end of the member (e.g., coil or tube shape). The deployment tip can be, for example, an electrolytically detachable end adapted to detach from a pusher by imposition of a current on said pusher. Further, any of the vaso-occlusive members described herein can further comprise a radio-opaque material (for example powdered tantalum, powdered tungsten, bismuth oxide, and barium sulfate) and/or a bioactive material.
In yet another aspect, a method for producing a vaso-occlusive member is described comprising the steps of (i) preparing a generally linear primary element comprising an absorbable material; (ii) winding said primary element onto a mandrel; and (iii) heating said mandrel and said primary element to produce said three dimensional member (e.g, a 15 minute heating step at approximately 165° C.). The vaso-occlusive member can have a variety of three-dimensional configurations including, for example, a helical coil configuration, a conical shape or a spiral shape. Further, any suitable mandrel can be used, for example, a stainless steel mandrel.
In yet another aspect, the invention includes a method for producing a vaso-occlusive member comprising

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Absorbable implantable vaso-occlusive member does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Absorbable implantable vaso-occlusive member, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absorbable implantable vaso-occlusive member will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3087733

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.