Absorbable &egr;-Caprolactone polymers and medical devices

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Matrices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S484000, C424S489000, C424S093700

Reexamination Certificate

active

06485749

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to crystalline, low melting, &egr;-caprolactone polymers bearing basic amine functionalities which are linked to the ester chain ionically or covalently to induce catalyzed hydrolysis. The ester components can be derived from &egr;-caprolactone with or without small amounts of glycolide, and/or similar lactones. Such polymers with accelerated absorption profiles are especially adapted for use as transient coatings for absorbable multifilament surgical sutures and other medical implants.
Multifilament surgical sutures such as Dexon® polyglycolide multifilament suture typically require a surface coating to improve their handling and knotting characteristics. Capitalizing on the desirable low melting temperature, crystallinity, and rheological properties of polycaprolactone and its copolymers as coating materials, several compositions based on this polymer were investigated as coatings for surgical sutures. Recognizing the fact that the &egr;-caprolactone homopolymer is essentially non-absorbable led to the development of copolymers of &egr;-caprolactone with variable amounts of more absorbable monomers to improve the coating absorbability. U.S. Pat. No. 4,624,256 discloses a suture coating copolymer of at least 90 percent &egr;-caprolactone and a biodegradable monomer and optionally a lubricating agent. Examples of monomers for the biodegradable polymers disclosed include glycolic acid and glycolide, as well as well-known monomers typically used to prepare absorbable polymer fibers or coatings for multifilament sutures. U.S. Pat. Nos. 4,788,979 and 4,791,929 disclose a bioabsorbable coating of a copolymer of at least 50 percent &egr;-caprolactone and glycolide. Sutures coated with such polymers are reported to be less stiff than sutures coated with other materials and the physical properties of the coated suture are also reported to be acceptable. U.S. Pat. No. 4,994,074 discloses copolymers of a predominant amount of &egr;-caprolactone, the balance being glycolide and glycolic acid. The use of glycolic acid as a comonomer into the copolymers of this invention was reported to increase the rate of absorption of the copolymer when used as a coating for multifilament surgical sutures.
Unfortunately, the problem of adequate bioabsorbability of &egr;-caprolactone-based polymers without detrimental effects on their desirable properties as coatings still remains. Specifically, the use of sufficient amounts of glycolide to achieve sufficient absorbability of the copolymeric coating can compromise its crystallinity and melting characteristics, for it may become amorphous or liquid near room temperature. On the other hand, the strategy of using glycolic acid to achieve the reported results in coating absorbability does limit the ability to produce sufficiently long chain molecules to achieve optimum frictional properties, due to glycolic acid's known properties as both a ring-opening initiator or chain terminator. Thus, a totally new approach to modifying the absorbability of polycaprolactone and its copolymers without affecting their desirable properties as suture coatings or coatings for surgical devices would be a more desirable goal.
SUMMARY OF THE INVENTION
One aspect of the invention are low melting, crystalline, basic nitrogenous polyesters, or polyesteramides, where the amine functionality represents between 1 and 20 percent of the total weight, while the repeat units of the polyester chain originate predominantly from &egr;-caprolactone. The balance ester sequences can be derived from glycolide, lactide p-dioxanone and/or one or more of the corresponding hydroxy acids. The amine functionality can be linked to the polyester chain ionically or covalently.
In another aspect, the invention is a coating for a surgical suture which displays autocatalyzed hydrolysis and improved absorbability over polyester coatings of the prior art which are devoid of any basic amine functionality. This coating comprises a low viscosity melt or a solution in an organic solvent, of the amine-bearing polyesters described above. Surprisingly, the incorporation of 1 to 10 percent of the amine functionality increased the polyester absorbability substantially, without compromising its desirable physical properties such as those associated with crystallinity and melting profile.
Polyesters bearing the amine-functionalities subject of this invention and coating derived therefrom can be used for coating bioabsorbable multifilament surgical sutures, as well as other surgical closure devices and indwelling devices. In addition, they may be used alone or as carriers or matrices for viable cells and vaccines, or as a coating containing bioactive agents such as growth factors, antimicrobials and antibiotics.
DETAILED DESCRIPTION OF THE INVENTION
Polyesters comprising predominantly &egr;-caprolactone polymer sequences generally refers to polymers with &egr;-caprolactone-based sequences of greater than 80 mole percent, the monomer compositions from which the polymers of this invention are derived. &egr;-Caprolac-tone is the predominant component of the polyester because of its low melting, exceptionally low glass transition temperature (Tg) and its ability to enhance the surface physical properties of coated multifilament sutures. Preferably, the amount of &egr;-caprolactone used in the synthesis of the polyester ranges from 90 to 99, more preferably 96 to 99 mole percent. For copolyesters of this invention, the remaining comonomers are preferably glycolide and/or glycolic acid. Other lactones such as lactide and p-dioxanone and/or their corresponding hydroxy acids can be used. The hydroxy acids can be used, specifically, as chain initiators to control the polyester molecular weight, as determined in terms of their inherent viscosities (I.V.) as approximately 0.1 g/dl solutions in chloroform, and/or to provide chains with a carboxylic end group. The basic nitrogenous polyesters which are the subject of this invention, are to have I.V. of 0.05 to 0.35 dl/g and, preferably, 0.05 to 0.25 and, more preferably 0.10 to 0.20 dl/g.
Two major types of amine functionalities can be introduced into the polyester chain to accelerate its absorption through autocatalyzed hydrolysis. Excluded from the amine-bearing functionalities are bio-active polypeptides. The weight percent of the amine functionalities in the polyesters subject of this invention can be between 1 and 20 and, preferably, 1 to 10. The first type of amine functionality comprises an ionically linked mono- or poly-functional amine which is capable of forming a carboxylate salt with an acid-terminated polyester chain. This can entail, for instance, a caprolactone/glycolide copolymer made using catalytic amounts of stannous octoate and glycolic acid as the chain initiator, and following a typical reaction scheme established for caprolactone polymerization. The resulting acid terminated polyester is then allowed to form carboxylate salts with amine-bearing molecules: lysine, l-lysine, potassium lysinate, or an alkane diamine as depicted by structures A and B, respectively.
The second type of amine functionality is covalently incorporated into the polyester chain. This can be achieved by amidation of preformed polyester with di- or poly-functional amine or using di- or poly-amine with at least one reactive hydrogen as the chain initiator, such as 1-methyl 4-aminomethyl-piperidine and 3,3′-diamino-N-methyl-diproppylamine. The ring opening polymerization can be achieved using catalytic amounts of stannous octoate. Typical polyesters covalently linked to the amine functionalities can be illustrated by structures D and E shown below.
Although this invention addresses low melting crystalline polyesters made predominantly of &egr;-caprolactone, those skilled in the art can foresee the use of other aliphatic polyesters as the base materials and incorporate the amine functionality to the aid terminated polyester chains by salt formation or the amidation of pre-formed polyester chains using amino compounds similar to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Absorbable &egr;-Caprolactone polymers and medical devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Absorbable &egr;-Caprolactone polymers and medical devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absorbable &egr;-Caprolactone polymers and medical devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2967735

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.