Absolute position transducer having a non-binary...

Electricity: measuring and testing – Magnetic – Displacement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S207220, C324S207240, C336S045000, C340S870320, C341S001000, C341S015000

Reexamination Certificate

active

06271661

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an absolute position inductive transducer. More particularly, this invention is directed to an absolute position inductive transducer that includes a non-binary code-track-type scale for extending the length of the absolute position scale.
2. Description of Related Art
U.S. Pat. No. 4,893,077 to Auchterlonie describes an absolute position sensor employing several linear tracks of inductive transducers. Each track of this sensor has a slightly different wavelength or frequency. The circuits in the sensor analyze the phase difference between the tracks to determine the absolute position of the read head. Similar known systems employ capacitive transducers having multiple tracks of capacitive elements, such as U.S. Pat. Nos. 4,879,508 and 5,023,599 to Andermo. The absolute position sensors of Auchterlonie and Andermo, however, suffer from a number of problems, including scale length limitations, sensitivity to contamination, increased manufacturing costs due to tight tolerance requirements, and difficulty to incorporate into hand-held devices.
U.S. Pat. No. 4,697,144 to Howbrook discloses a transducer that employs several pitches of coils (each pitch representing 360° of phase change) to similarly provide an absolute position using an inactive member. This transducer, however, has a limited range within which to determine the absolute position of the inactive member. Additionally, this transducer fails to provide sufficient accuracy for most applications.
U.S. Pat. No. 5,027,526 to Crane describes an optical transducer that reads a bar code pattern printed on a coiled tape. This bar code pattern is the standard interleaved 2 of 5 bar code symbol that encodes several numbers between start and stop bar code patterns. The numbers, in turn, correspond to a coarse absolute position of the tape. Circuits read the bar code symbols and convert them to numbers representing the absolute position of the tape. Clockings based on the position of a drum that coils the tape determine a fine position measurement.
This absolute transducer, however, suffers from traditional problems of optical transducers, such as scale length limitations, sensitivity to contamination, increased manufacturing costs, and large current supply requirements. Furthermore, this absolute transducer is not a true absolute transducer at every position, because the transducer requires a scanning motion through a range as long as the bar code in order to derive or update an absolute position measurement. This renders it unusable for many applications.
U.S. patent application Ser. No. 08/788,469, filed Jan. 29, 1997, U.S. Pat. No. 5,886,519 and U.S. Pat. No. 5,841,274 to Masreliez et al., each herein incorporated by reference in its entirety, disclose a number of longer-range absolute position transducers. One current absolute position transducer increases the absolute position range by using multiple analog tracks with different repeat lengths. However, the current state of the art for inductive and capacitive transducers imposes a maximum practical ratio of wavelengths between tracks of about 32:1 (regardless of whether the ratio is established by the primary wavelengths, or by a beat frequency between closely spaced wavelengths), a minimum for the fine wavelengths from 1.28 mm to 5.12 mm, and read head lengths of at least five fine wavelengths for most metrology applications. Longer fine wavelengths provide proportionately lower resolution and accuracy. Therefore, the maximum length of a two-track scale would be 32 fine wavelengths (about 40 to 160 mm). Longer scales would require more tracks, more read heads, and wider overall scale width, thus are more expensive and require a larger physical size. A typical scale with a fine wavelength of 2.56 mm would require 3 tracks and read heads to achieve a scale length of between 80 mm and 2500 mm.
Another current absolute position transducer disclosed in Masreliez uses binary coded tracks to increase the absolute position range. This transducer requires a code track having N-bit code words and N read heads to achieve a coarse scale length of 2
N
fine wavelengths. A scale would require 8 read heads to achieve a coarse scale length of 256 fine wavelengths. This transducer uses a pseudo-random sequence of code words analyzed along the code track. Shifting the read head by one code position anywhere in the sequence will generate a unique code word, distinguishable from all other code words. Each code word position corresponds to and uniquely identifies a particular fine wavelength of a fine wavelength scale having approximately 2
N
fine wavelengths. Once the particular fine wavelength is identified, the fine wavelength scale can be used to identify the absolute position to a fine resolution. However, the length of this transducer is limited to the length of the coarse wavelength. Further, not all code words are usable because of the inability to unambiguously determine certain code words.
Another current transducer uses separator marks such as start, stop, and parity bits between code words. Therefore, in a binary system which can read an 8-bit code word and uses three bits to accomplish synchronization, the maximum scale length would be 8*2
(8-3)
(256) bit positions.
U.S. patent application Ser. No. 09/143,790 to Steinke, filed Aug. 31, 1998, U.S. Pat. No. 6,157,188 herein incorporated by reference in its entirety, discloses a number of compact, long-range absolute position transducers. These transducers include an encoded numerical binary code track and at least one analog fine scale track so that a coarse wavelength can be determined. The code track is arranged so that each coarse wavelength has a predetermined relationship with one sequentially arranged code word or with a block of code words. Because the starting point of the code words can be determined, no codes need to be avoided to prevent ambiguity.
Yet another current transducer uses continuously varying wavelengths. This technique will work with a single track. However, the fine scale accuracy degrades as the wavelength increases toward the ends of the scale, since there are fewer fine scale marks under the read head. Additionally, the reduced spacing between the marks decreases the contrast between the phases. In this device, the scale length is limited by the read head length, the minimum spacing which allows marks to be accurately distinguished, and the minimum number of marks which are required under the read head for adequate accuracy.
SUMMARY OF THE INVENTION
There is thus a need for an absolute position transducer system that is suitable for a wide variety of applications, including very long measuring range applications and low-power applications, that is accurate, compact, and relatively inexpensive to manufacture compared to the conventional transducers described above, and that provides an absolute position output signal.
This invention provides an inductive absolute position transducer having a longer scale for a given read head length, or a smaller read head for a given scale length. The inductive absolute position transducer provides a longer maximum scale length than transducers using pseudo-random binary code tracks and sequential binary code tracks.
The absolute position transducer of this invention is useful for high accuracy applications such as linear or rotary encoders. This high accuracy is on the order of 0.1 micron for a one meter absolute scale.
One embodiment of the inductive absolute position transducer of this invention includes a code-track-type scale having sequentially arranged, non-binary code words. The code track uses more than two levels to create a base-N code word where N is greater than 2 (i.e., non-binary). Preferably each digit will have an even number of levels, so that with differential windings used for both digit value and phase measurement, zero output is only seen when the sensor loop is positioned over the space between code digits on the scale. The maximum scale length would be N
M
code words

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Absolute position transducer having a non-binary... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Absolute position transducer having a non-binary..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Absolute position transducer having a non-binary... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2449133

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.