Abrasive grinding tools with hydrated and nonhalogenated...

Abrasive tool making process – material – or composition – With synthetic resin

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C051S295000, C051S307000, C051S308000, C051S309000

Reexamination Certificate

active

06251149

ABSTRACT:

BACKGROUND OF THE INVENTION
Tools employed for grinding often include abrasive grains bonded in or to a polymer. Typically, such tools are in the form of bonded composites, or flexible substrates coated with abrasive compositions. In both cases, however, wear of grinding tools is determined by several factors including, for example, the material being ground, the force applied to the grinding surface, the rate of wear of the abrasive grains, and the chemical and physical properties of the polymer employed to bond the abrasive grains.
Grinding efficiency in a bonded composite is affected by the rate at which the bonding polymer wears, decomposes, liquefies or is otherwise lost. For example, if the polymer bond is lost too rapidly, abrasive grains will be thrown off before they are worn sufficiently to have exhausted their capacity to effectively grind. Conversely, if the polymer bond does not wear away rapidly enough, abrasive grains will be retained on the surface of the grinding tool beyond their useful life, thereby preventing new underlying grains from emerging. Both effects generally can limit grinding efficiency.
Several approaches have been employed to improve the useful life of grinding tools and their efficiency. One such approach has been to employ a “grinding aid.” Many types of grinding aids exist, and they are believed to operate by different mechanisms. According to one proposed mechanism, grinding temperature is decreased by reducing friction through use of a grinding aid that melts or liquefies during the grinding operation, thereby lubricating the grinding surface. In a second mechanism, the grinding aid reacts with the metal workpiece by corroding freshly cut metal chips, or swarf, thereby preventing reaction of the chips with the abrasive or rewelding of the chips to the base metal. In a third proposed mechanism, the grinding aid reacts with the ground metal surface to form a lubricant. A fourth proposed mechanism includes reaction of the grinding aid with the surface of the workpiece to promote stress-corrosion cracking, thereby facilitating stock removal.
SUMMARY OF THE INVENTION
The invention relates generally to abrasive tools.
In one embodiment, the abrasive tool of the invention is a bonded-abrasive tool including a matrix of an organic bond, abrasive grains dispersed in the organic bond, and an inorganic nonhalogenated filler that can react with free radicals formed from the organic bond during grinding.
In another embodiment, the abrasive tool of the invention is a bonded-abrasive tool including an organic bond, abrasive grains dispersed in the organic bond, and a hydrated filler in the organic bond.
In still another embodiment, the abrasive tool of the invention is a coated-abrasive tool including a flexible substrate, abrasive grains on the substrate, and an organic bond containing sodium antimonate or antimony oxide on the flexible substrate.
In yet another embodiment, the abrasive tool of the invention is a coated-abrasive tool including a flexible substrate, abrasive grains on the flexible substrate, and an organic bond containing a hydrated filler on the flexible substrate, wherein the hydrated filler is selected from the following: calcium hydroxide, magnesium hydroxide, hydrated sodium silicate, alkali metal hydrates, nesquehonite, basic magnesium carbonate, magnesium carbonate subhydrate and zinc borate.
The present invention has many advantages. For example, an embodiment of an abrasive tool of the present invention that includes a hydrated filler as a grinding aid significantly reduces high temperatures produced by friction. It is believed that the hydrated filler limits temperature rise during grinding by endothermically releasing water, thereby slowing loss of the bond. In an abrasive tool of the invention that includes an inorganic nonhalogenated filler, the inorganic nonhalogenated filler reduces degradation of the bond by reacting with free radicals released from the bond during grinding. The fillers incorporated in the abrasive tools of this invention may reduce the likelihood of thermal degradation in the manner of flame retardants. All of these mechanisms can significantly increase the useful life and efficiency of bonded and coated abrasive tools. Further, the grinding aids included in the abrasive tools of this invention, unlike many grinding aids, will not release potentially-hazardous halogens during grinding.
DESCRIPTION OF PREFERRED EMBODIMENTS
The features and other details of the method of the invention will now be more particularly described. It will be understood that the particular embodiments of the invention are shown by way of illustration and not as limitations of the invention. The principle features of this invention can be employed in various embodiments without departing from the scope of the invention.
An abrasive tool of this invention includes an organic bond, abrasive grains and a grinding aid that includes a hydrated filler and/or an inorganic nonhalogenated filler, wherein the grinding aid advantageously alters the thermal and/or mechanical degradation of the organic bond during grinding. In one preferred example, the abrasive tool is a resin-bonded grinding wheel.
The organic bond of the abrasive tool is suitable for use as a matrix material of a grinding wheel, with abrasive grains dispersed throughout. An example of a suitable organic bond is a thermosetting resin. Preferably, the thermosetting resin is either an epoxy resin or a phenolic resin. Specific examples of suitable thermosetting resins include phenolic resins (e.g., novolak and resole), epoxy, unsaturated polyester, bismaleimide, polyimide, cyanate ester, etc.
Typically, the volume of the organic bond is between about 2% and about 64% of the abrasive grinding composition of a bonded-abrasive tool, wherein the abrasive grinding composition is defined as the bond, abrasive grains, fillers in the bond, and porosity in the bond. Preferably, the volume of organic bond in an abrasive grinding composition of a bonded-abrasive tool of this invention is in a range of between about 20% and about 60%, and more preferably about 30-42%.
In a typical coated-abrasive tool suitable for use with the present invention, the abrasive grinding composition is coated on a flexible substrate of, for example, paper, film, or woven or stitched bonded cloth. A resinous bond, also known as a maker coat, is coated on the flexible substrate. Abrasive grains are then applied to the maker coat by electrostatic techniques or by a simple gravity feed and are secured to the maker coat with a phenolic size coat. Optionally, a supersize coat can be applied over the size coat. Grinding aids are typically included in the size or the supersize coat. Each of the coatings may be applied in a polymeric carrier of, for example, acrylic polymer. After each application, the tool is cured, typically at about 107° C. Further descriptions of coated abrasive tools suitable for application of the present invention is provided in U.S. Pat. Nos. 5,185,012, 5,163,976, 5,578,343 and 5,221,295, the teachings of all of which are incorporated herein by reference in their entirety. In a preferred embodiment, the bond, or maker coat, of a suitable coated-abrasive tool is EBECRYL™ 3605 resin (a reaction product of diepoxylated bisphenol A and acrylic acid in a one-to-one molar relationship, available from UCB Chemicals). It has a mass, expressed as a function of substrate surface area, of 30 g/m
2
in a preferred embodiment.
Abrasive grains of the abrasive tool generally are suitable for grinding metal, or in some instances, ceramic workpieces. Examples of suitable abrasive grains are those formed of aluminum oxide, diamond, cubic boron nitride, silicon carbide, etc. Generally, the size of abrasive grains in the abrasive tool of the invention is in a range between about 4 grit and about 240 grit (6,848-63 micrometers), preferably 4 to 80 grit (6,848-266 micrometers). Aluminum oxide grains with a grit size in a range between about 16 and about 20 grit (1,660-1,340 micrometers) are particularly suitable. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Abrasive grinding tools with hydrated and nonhalogenated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Abrasive grinding tools with hydrated and nonhalogenated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Abrasive grinding tools with hydrated and nonhalogenated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2491997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.