Abrasive fluid compositions

Abrasive tool making process – material – or composition – With inorganic material – Metal or metal oxide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C051S307000, C051S308000, C106S003000, C216S089000, C438S692000, C438S693000, C451S036000

Reexamination Certificate

active

06569216

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a polishing composition and a polishing process.
BACKGROUND ART
With advancement of densification of hard disks, an increase in the polishing rate and improvement in reduction in the surface roughness have been demanded in a polishing process for a hard disk substrate. Also, even in the field of semiconductors, the finely sizing of a design room for a semiconductor has been progressed with the advancements in high integration and high speeds, so that a focal depth becomes shallow during the process for manufacturing the device, whereby further demanding planarization of the pattern-forming surface. Therefore, studies have been made on a polishing composition using a chelating compound or a salt thereof, and a polishing process (Japanese Examined Publication No. Hei 7-81132).
However, when only the chelating compound or a salt thereof is used, effects for high planarization of pattern-forming surfaces of hard disk substrates and semiconductors and for reduction in the surface roughness and surface defects such as scratches and pits are insufficient, and the surface defects are increased depending on objects to be polished. Therefore, the composition cannot be said to be satisfactory as a polishing composition.
In addition, a polishing composition using water, alumina, boehmite, and a chelating compound, and a polishing process have been studied (Japanese Patent Laid-Open No. Hei 11-92749). However, this polishing composition has some but insufficient effects for increasing the polishing rate and for reducing surface defects such as scratches and pits. Therefore, its effects cannot also be said to be satisfactory for reduction in the surface roughness and for the planarization.
DISCLOSURE OF INVENTION
An object of the present invention is to provide a polishing composition capable of increasing the polishing rate and reducing the surface roughness, without causing surface defects on a surface of an object to be polished; and a polishing process for a substrate to be polished.
These objects and other objects of the present invention will be apparent from the following description.
Specifically, in sum, the present invention relates to:
[1] a polishing composition comprising a chelating compound or a salt thereof; a partially esterified product and/or partially etherified product of a polyhydric alcohol compound; and water [hereinafter referred to as “a first polishing composition”];
[2] the polishing composition according to item [1] above, further comprising an abrasive [hereinafter referred to as “a second polishing composition”];
[3] a polishing composition comprising water, an abrasive, an intermediate alumina, and a chelating compound or a salt thereof, wherein the content of the intermediate alumina is from 1 to 50 parts by weight, based on 100 parts by weight of the abrasive [hereinafter referred to as “a third polishing composition”];
[4] a polishing composition comprising water, an abrasive, an intermediate alumina, a chelating compound or a salt thereof, and a partially esterified product and/or partially etherified product of a polyhydric alcohol compound, wherein the content of the intermediate alumina is from 1 to 50 parts by weight, based on 100 parts by weight of the abrasive [hereinafter referred to as “a fourth polishing composition”]; and
[5] a polishing process for a substrate to be polished, comprising polishing the substrate to be polished by using a polishing composition as defined in any one of items [1] to [4] above during polishing.
BEST MODE FOR CARRYING OUT THE INVENTION
The polishing composition of the present invention includes:
[Embodiment A] a polishing composition comprising a chelating compound or a salt thereof; a partially esterified product and/or partially etherified product of a polyhydric alcohol compound; and water; and further comprising an abrasive as occasion demands (the first and second polishing compositions);
[Embodiment B] a polishing composition comprising water, an abrasive, an intermediate alumina, and a chelating compound or a salt thereof, characterized in that the content of the intermediate alumina is from 1 to 50 parts by weight, based on 100 parts by weight of the abrasive (the third polishing composition); and
[Embodiment C] a polishing composition comprising water, an abrasive, an intermediate alumina, a chelating compound or a salt thereof, a partially esterified product and/or partially etherified product of a polyhydric alcohol compound, characterized in that the content of the intermediate alumina is from 1 to 50 parts by weight, based on 100 parts by weight of the abrasive (the fourth polishing composition).
Next, each of the embodiments will be described.
[Embodiment A]
The chelating compound usable in this embodiment is a compound having a multidentate ligand, capable of forming a complex by binding with a metal ion. The chelating compound includes, for instance, hydroxycarboxylic acids such as tartaric acid and malic acid; aminocarboxylic acids such as nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid; polymer compounds obtained from introducing these aminocarboxylic acids; (meth)acrylic acid polymers; copolymers of (meth)acrylic acid with other monomers; and the like. Among the chelating compounds, those having two or more carboxyl groups are preferable, from the viewpoint of increasing the polishing rate, and those aminocarboxylic acids further having amino group are more preferable, and those polyaminocarboxylic acids further having two or more amino groups are especially preferable.
The salt of these chelating compounds is not particularly limited, as long as it is a salt with a substance capable of forming a salt with the chelating compound. Concretely, there are included salts with metals, ammonium, alkylammoniums, organic amines, and the like. Concrete examples of the metals include metals belonging to the Groups 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A and 8 of the Periodic Table (long period form). Among these metals, those belonging to the Groups 1A, 3A, 3B, 7A and 8 are preferable, from the viewpoint of increasing the polishing rate, and those belonging to the Groups 1A, 3A, 3B, 7A and 8 are more preferable. Cerium belonging to the Group 3A, aluminum belonging to the Group 3B, manganese belonging to the Group 7A, and iron and cobalt belonging to the Group 8 are especially preferable, and aluminum belonging to the Group 3B, and iron and cobalt belonging to the Group 8 are most preferable. As to the salt of these chelating compounds, a salt with a required metal may be previously formed, or a desired salt may be obtained by mixing an inorganic acid salt such as nitrate, sulfate or phosphate, or an organic acid salt such as acetate containing these metals with a chelating compound to carry out chelation exchange in the polishing composition.
Concrete examples of the alkylammoniums include dimethylammonium, trimethylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, and the like.
Concrete examples of the organic amines include alkanolamines, and the like.
The salt of the chelating compound is especially preferably salts formed between polyaminocarboxylic acids and cerium belonging to the Group 3A, aluminum belonging to the Group 3B, manganese belonging to the Group 7A, or iron and cobalt belonging to the Group 8, from the viewpoint of increasing the polishing rate. Salts formed between polyaminocarboxylic acids and aluminum belonging to the Group 3B, or iron and cobalt belonging to the Group 8 are most preferable. Also, the salt may be salts with two or more kinds of substances capable of forming a salt with the chelating compound. Especially, the salt of aluminum and other substances is especially preferable.
These chelating compounds or salts thereof may be used alone, or in admixture of two or more kinds.
The content of the chelating compou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Abrasive fluid compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Abrasive fluid compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Abrasive fluid compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3001089

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.