Abrasion resistant conformal beaded-matrix for use in safety...

Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Scrim

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S101000, C428S105000, C428S107000, C428S156000, C428S112000, C428S172000, C428S131000, C428S134000, C428S908800, C428S137000, C002S455000, C002S456000

Reexamination Certificate

active

06589891

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the manufacture of abrasion-resistant safety garments, and more particularly to a conformal-beaded matrix which may be incorporated within garments to protect the wearer from abrasion.
2. Background of the Description
Various forms of safety garments have been created for use in sports such as motorcycling, bicycling, skating, skateboarding. Many of these garments incorporate impact absorbing areas and abrasion resistant materials which improve wearer safety. The protection offered by these safety garments fall into two main categories: impact protection and abrasion protection. Padded areas, often within resilient cups that may be constructed of materials such as Temperfoam™, are often sewn into garments over impact-sensitive areas, such as over the knees, elbows, shoulders, ankles, and even over the spine. These impact absorbing sections are often referred to as “body armor”. Densely woven materials, generally provided in layers, are used within these safety garments for preventing abrasion over the remaining fleshy areas of the user. Traditionally one of the best materials for these safety garments has been thick leather (i.e. over 1.5 mm), as it provides abrasion resistance many times greater than traditional cloth materials. Newer materials such as ballistic nylon, Cordura™, Gortex™, Kevlar™, along with armor sections, are being incorporated within otherwise traditionally constructed cloth garments in order to increase their abrasion resistance. These garments rely on the use of layers of dense durable abrasion resistant cloth materials to protect the wearer.
Often minor abrasions are referred to as “road rash” wherein a slowly moving body contacts a roadway surface at a speed of under 15-20 mph. However in sports such as motorcycle riding, a fall at even moderate speed on a roadway surface can result in severe abrasions; whereby not only the skin is abraded away, but significant amounts of flesh, muscle, and bone can be similarly removed. Even moderate abrasion wounds are painful and slow healing. Severe abrasion wounds can result in a significant blood loss, an infection hazard, a likelihood of permanent disfigurement, and even death.
Everyday clothing provides insignificant levels of abrasion resistance, such as to a motorcycle rider falling on a roadway. In Australia in 1982, the Royal Brisbane Hospital Burn Unit completed a 13½ year study of motorcycle burn injuries wherein 29% of the burn unit victims were road abrasion burns with 46% experiencing the burns to both upper and lower extremities. Of these the median hospital stay was 8 days, but ranged up to 186 days. It was concluded that proper safety clothing would have prevented all of these road abrasion burns. Similar studies have been conducted in England, Germany and other countries with similar results.
Insurance industry and government committees have been looking closely into regulations directed at safety garments. At this time Germany is considering compulsory clothing standards which require motorcycle riders to wear certified safety garments, while the British Standards Institute of the British government is drafting standards for protective clothing for motorcycle riders.
As can be seen, therefore, abrasion-resistant protective clothing should be worn when one is involved an any high speed activity where one is otherwise unprotected from abrasion as a result of a fall. However, the use of protective clothing is often ignored, even though equipment currently exists which can largely protect riders from impact and abrasion injuries. Part of the lack of acceptance of current safety garments may lie in the numerous drawbacks that are inherent in the designs which limit their proper habitual use.
There are generally two principle forms of safety garments available for sports such as motorcycle riding; the first category is leathers, while the second is cloth type garments. Thick leather provides a good measure of protection and is favored by the majority of competitive riders. Its thickness and durability often requires that only a single layer is required to prevent abrasion. However the leather does not stretch nor does it allow air-flow to reach the wearer. Protection in the, many current cloth-type safety garments is provided by means similar to those used within ballistic protection gear, such as so called “bullet proof vests”; wherein a tightly closed material structure is created through which no objects can incur. Layers of densely woven Kevlar™ and carbon fibers have replaced steel chain-mail type construction in these protection suits. Within an abrasion resistant garment, numerous layers of material are utilized to provide redundancy as a layer wears through during a fall, and to provide thermal insulation. To further enhance protection against abrasion, more ballistic armor techniques have been considered, such as covering the exterior of the garment with closely spaced platelets. Within ballistic protection suits the platelets are intended to prevent ballistic incursion, but in this case have been considered to prevent roadway incursion. However, it will be appreciated that such approaches lead to the creation of a heavy garment that is substantially covered with anti-ballistic material. Opening up platelet spacing then leads not only to a garment that tears on impact, but one in which the friction forces rotate platelets, platelet halves, or platelet fragments, against the skin of the wearer inflicting additional injury. In general, abrasion resistant clothing follows the teachings of ballistic protection to provide abrasion protection.
Unfortunately, both the leather and cloth designs, when promulgated as abrasion safety garments, restrict air-flow and consequently when worn in warm to hot weather are at best uncomfortable, and may in fact be unwearable, due to the high risk of hyperthermia. Thick garments such as these allow insignificant amounts of air to flow and thereby pose a dangerous hyperthermia risk as body temperatures can soar. It is not surprising that a large percentage of safety-conscious riders don't ride when it gets warm out, . . . while others ride dangerous underprotected with street clothing. Clothing manufacturers have worked to provide various forms of venting for conventional safety garments, however, venting is unable to compensate for the bulk of layers of tightly woven material surrounding the wearer, and vents are of only minor aid when the wearer is stationary. To fully appreciate the situation, it should also be remembered that in the case of a motorcycle rider, the rider is seated above an engine operating at high temperature, the heat from which rises to envelop the rider.
Accordingly there is a need for abrasion resistant safety garments that can be constructed to minimally restrict ventilation of the wearer. The abrasion resistant conformal beaded-matrix in accordance with the present invention satisfies that need, as well as others, and overcomes deficiencies in previously known techniques.
BRIEF SUMMARY OF THE INVENTION
The present invention is an abrasion resistant garment and method of garment construction that employs round beads held within a two-dimensional open matrix of abrasion-resistant cords. Abrasion resistant beads with low levels of abrasive friction are attached within a crossing matrix of abrasion resistant cords. Constructed within a garment, the bead matrix allows a high degree of ventilation as it covers only a small percentage of skin surface; yet it can provide high levels of abrasion resistance to enhance the safety of sports such as motorcycle riding.
Within the current invention it has been recognized that abrasion resistance is not an analogous problem to that of ballistic protection. Presently, abrasion resistant garments solve the abrasion problem at a micro-level wherein incursion through the fabric is considered throughout the span of fabric. Therefore, the fabric must be of a substantially uniform nature wherein no portion

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Abrasion resistant conformal beaded-matrix for use in safety... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Abrasion resistant conformal beaded-matrix for use in safety..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Abrasion resistant conformal beaded-matrix for use in safety... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060089

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.