ABR flow control using single bit congestion indication and...

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S232000

Reexamination Certificate

active

06584111

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to congestion control and avoidance in a communications network and, more particularly, to controlling and avoiding congestion in an Asynchronous Transfer Mode (ATM) network using a wavelet-based filtering mechanism in an Available Bit Rate (ABR) Explicit Forward Congestion Indication (EFCI) flow control solution.
The
ATM Forum Traffic Management Specification
, Version 4.0, 1996 (TM4.0), currently defines five service classes to support the diverse requirements of multimedia traffic: Constant Bit Rate (CBR), Real-Time Variable Bit Rate (RT-VBR), Non-Real-Time Variable Bit Rate (NRT-VBR), Available Bit Rate (ABR), and Unspecified Bit Rate (UBR). Both CBR and RT-VBR service classes provide stringent cell transmission delay (CTD), cell delay variation (CDV), and cell loss ratio (CLR) constraints. NRT-VBR service provides stringent CTD and CLR constraints but no CDV guarantees. CBR, RT-VBR, and NRT-VBR all rely on the network reservation of resources to provide a required quality of service (QoS).
ABR and UBR service classes are defined for applications with unpredictable bandwidth requirements, that are sensitive to cell loss, but are able to tolerate a certain amount of delay. ABR and UBR service classes are designed so that applications in these classes can grab any unused network resources that VBR and CBR traffic does not utilize, i.e., unused bandwidth and buffer space. Gains due to statistical resource utilization, however, come at the risk of potential congestion when many applications compete for network resources. Therefore, proper congestion control must be in place to ensure that network resources can be shared in a fair manner and that performance objectives such as cell loss ratio can be maintained.
UBR service is truly “best-effort,” and thus the network provides no service guarantees for UBR. ABR, however, provides some service guarantees. Therefore, ABR must comply with the flow control framework specified in TM4.0, which supports several types of feedback to control the source rate in response to changing transfer characteristics. This feedback information is conveyed to the source, which adapts its traffic in accordance with the feedback. The feedback information includes the state of congestion and a fair share of the available bandwidth according to a network-specific allocation policy. To ensure interoperability, an ABR end system must always implement the source and destination behavior defined in TM4.0. In particular, the cell rate from an ABR source is bounded by a Peak Cell Rate (PCR) and Minimum Cell Rate (MCR) and must abide by a Cell Delay Variation Tolerance (CDVT).
The ABR congestion control scheme specified in TM4.0 is a rate-based, closed-loop, per-connection control that utilizes the feedback information from the network to regulate the rate of cell transmission at the source.
FIG. 1
illustrates the basic operation of ABR congestion control. In network
100
, source
102
transmits data cells
108
to destination
104
via one or more switches in network
100
, one of which is shown as switch
106
in FIG.
1
. Source
102
also generates special probe cells
110
referred to as resource management (RM) cells in proportion to its current data cell rate. Destination
104
turns around and sends RM cells
110
back to source
102
in the other direction. The RM cells, which can be examined and modified by the switches in both forward and backward directions, carry feedback information of the state of congestion and the fair rate allocation. The following summarizes the operation of the rate-based control scheme, the details of which, along with the detailed RM cell format, are found in TM4.0, which is incorporated herein by reference.
At switch shall implement at least one of the following methods to control congestion:
a) Explicit Forward Congestion Indication (EFCI) marking: The ATM switch may set the EFCI state in the data cell headers. Most first-generation ATM switches implemented this mechanism even before the RM cell was fully defined.
b) Relative rate marking: The ATM switch may set t he congestion indication (CI) bit or the no increase (NI) bit in the forward and/or backward RM cells.
c) Explicit rate marking: The ATM switch may reduce the explicit rate (ER) field of forward and/or backward RM cells.
Switches that implement EFCI marking and relative rate marking are known as binary switches, which are simple to implement but may result in unfairness, congestion oscillation, and slow congestion response. Switches that implement explicit rate marking are generally referred to as ER switches and require sophisticated mechanisms at the switches to compute a fair share of the bandwidth. The TM4.0 standard-defined source and destination behaviors, however, allow interoperation of all three congestion control options according to the following rules.
Once the source has received permission, it begins scheduling cells for transmission at the allowed cell rate (ACR). The ACR is initially set to the initial cell rate (ICR) and is always bounded between the minimum cell rate (MCR) and the peak cell rate (PCR) specified by the application at call setup. An RM cell precedes transmission of any data cells. The source continues to send RM cells, typically after every Nrm data cells, where Nrm is the maximum number of data cells a source may send for each forward RM cell. The source places the ACR value in the current cell rate (CCR) field of the RM cell, and i:the rate at which it wishes to transmit cells (usually the PCR value) in the ER field. The RM cells traverse forward through the network, and the destination turns the RM cells around in the backward direction. Intermediate switches on the path notify the source of congestion by marking the EFCI bit in the data cells and the CI or NI bit in the RM cell, and/or reducing the ER value in the RM cells.
Upon receiving the RM cell in return, the source should adapt its ACR to the information carried in the RM cell. If the CI bit is not set, the source may linearly increase its ACR by a fixed increment (RIF*PCR), where the rate increase factor (RIF) is determined at call setup. This increase can reach the ER value in the RM cell, but should never exceed the PCR. If the CI bit is set, the source must exponentially decrease its ACR by an amount greater than or equal to a proportion of its current ACR (RDF*ACR), where the rate decrease factor (RDF) is also determined at call setup. The factors RIF and RDF control the rate at which the sources increase and decrease, respectively.
If the ACR is still greater than the returned ER, the source must further decrease its ACR to the returned ER value, although it should never be below the MCR. If the NI bit is set, the source should observe the CI and ER fields in the RM cell, but it is not allowed to increase the ACR above its current value.
In EFCI marking binary feedback control schemes, the ATM switch sets the EFCI bit in the ATM cell header during congestion. As described above, end systems use this one-bit information contained in each cell to increase/decrease their cell rates by an incremental amount. This basic mechanism imposes very small implementation burdens on switches and requires minimal processing. Several mechanisms exist for the switch to determine the onset of congestion, including the following EFCI schemes.
Many first generation ATM switches implemented binary schemes based on a simple first-in-first-out (FIFO) queuing mechanism shared by all ABR connections. Under this basic EFCI scheme, a switch determines the onset of congestion at time interval t when the queue level q(t) in one of the switch's buffers exceeds some preset threshold q
T
, shown in FIG.
2
A:
q
(
t
)≧
q
t
→EFCI bit(data cell)=1.
In some implementations of this scheme, the switch declares the onset of congestion if the instantaneous queue size exceeds a threshold q
high
, shown in
FIG. 2B
, and detects a normal “uncongested” state when the queue size drops below another threshold q
low
, also s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ABR flow control using single bit congestion indication and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ABR flow control using single bit congestion indication and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ABR flow control using single bit congestion indication and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3148652

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.