Above ground non-edible foraging matrix configurations for...

Fishing – trapping – and vermin destroying – Vermin destroying – Poison holders

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C043S132100, C043S107000, C043S124000, C043S121000, C106S015050, C424S411000, C424S084000

Reexamination Certificate

active

06606817

ABSTRACT:

BACKGROUND AND PRIOR ART
Common nuisance pests that are of a primary concern for causing damage generally include arthropods such as termites, carpenter ants, fire ants and roaches. In southern areas especially Florida, termites are considered to be one of the most destructive arthropod pests for any manmade structures containing wood such as the framing in homes, as well as for causing destruction to natural wood containing items such as trees, and the like. termites and dry wood termites. Subterranean termites typically nest in the ground and usually maintain some sort of ground connection at all times. Dry wood termites usually start off in damaging pieces of wood materials, and do not require a ground connection. Between the two forms, the subterranean termites are the most damaging type of termites and usually enter structures such as buildings from surround soil adjacent to the structures.
Over the years there have been at least several methods of subterranean termite control. For example, the most common method of subterranean termite control requires soil underlying a structure to be treated with a termiticide barrier to prevent the termites from entering the structure from the ground. For example, a typical structure such as a house would have used hundreds of gallons of termiticide that would have been used to treat the soil underneath the house foundation.
From approximately 1950 to approximately 1988, a popular method for barrier treatment control for subterranean termites was chlorinated hydrocarbons. However, environmental concerns with those chemical treatments resulted in problems with the soil that could last up to approximately 35 years. Replacement chemicals for the chlorinated hydrocarbons were not popular since the replacement chemicals had a high rate of failure which resulted in extensive termite damage to the structures.
Problems with the barrier treatments became further compounded since builders have often been known to dump substantial amounts of termite edible building materials, such as wood and cardboard scraps, into the underlying soil that have served as guide lines for allowing the termites to then enter from the soil up and into the structures. These edible debris are a substantial food source, that increases the likelihood of termite infestation into the structure.
Over the years, different techniques have been developed and proposed to enhance the underground delivery of toxic insecticides beneath structures. See for example, U.S. Pat. Nos. 3,940,875 and 4,043,073 to Basile; and U.S. Pat. No. 4,625,474 to Peacock. However, many of these techniques and systems such as Basile '073 are concerned with trying to refresh the initial termiticide barrier by having the termites chew through a container with the toxicant (for example). Other examples of these techniques and systems allow for installing a piping system during the building construction process so that additional termiticide can be pumped under a slab of the building at intervals during construction. Furthermore, some of these techniques and systems such as the Basile '073 patent utilized a toxicant (for example, dieldrin) which has been banned by the EPA (Environmental Protection Agency) for termite treatment. Additionally, the pipes used in the pumping delivery systems have been known to often get clogged after installation making the pipe delivery systems not reliable nor usable overtime.
Other well-known subterranean termite treatment techniques and systems include bait techniques, which require termites to forage into a monitor that contains a non-toxic food source. Once termites infest the non-toxic food source, a food source laced with a toxicant (toxic bait) is replaced into the monitor. Termites continue to be recruited into the monitor and feed on the toxic bait. Consumption and trophallaxis (feeding other termites) of the toxic bait later causes many termites to die. See for example, U.S. Pat. No. 5,329,726 to Thome et al.; U.S. Pat. No. 5,899,018 to Gordon et al.; and U.S. Pat. No. 5,950,356 to Nimocks. However, these techniques generally require that the termites consume the toxic bait. Termites refuse to consume most toxicants. Therefore this technique is generally useful for only some 2 to 3 toxicants currently known in the world. Termites also refuse to consume bait food sources that are contaminated with molds or food sources that are too wet. These bait techniques do not use a non-edible foraging matrix (as described in the subject invention), such as but not limited to soil and sand, to cause the termites to tunnel therethrough and carry the non-edible particles treated with the toxicants to the galleries and living spaces of the colony, and thus contaminating the colonies. Most toxicants applied to non-edible foraging matrixes, except repellant pyrethroids, will be picked up and carried by the termites to other areas of their tunnel systems.
Other systems have been proposed but still fail to overcome the problems with the methods and applications described above. U.S. Pat. No. 3,972,993 to Kobayashi et al. requires a membrane be treated with a substance attractive to termites (due to the termite's innate searching and feeding behavior, termites are not attracted to food from a distance when allowed to forage without interference) so that when the termites chew through the membrane a toxic surface is contacted. U.S. Pat. No. 5,501,033 to Wefler delivers a liquid toxic food source for social insects such as yellowjackets and has very little use for termites. U.S. Pat. No. 5,609,879 to Myles requires the laborious harvesting of termites from the ground, sponging on an insecticidal epoxy, and returning it to the soil. U.S. Pat. No. 5,778,596 to Henderson et al. is a device for delivering toxic food for termites to consume. And U.S. Pat. No. 5,921,018 to Hirose provides foraging guidelines for termites to follow so the termites enter a device that captures and kills them.
There are additional problems with prior art treatments that use repellent liquids, non-repellent liquids, and baits. When using repellent liquids, the liquid barriers need to be applied in a perfectly continuous fashion. If gaps in the treatment exist, especially with repellent termiticides, such as those belonging to the pyrethroid class, the termites will forage and find the gaps in the treatment, increasing the probability of infesting the structure.
In non-repellent liquid treatments, the termites are not able to detect that they are in a treated area; hence the classification “non-repellent”, and the termites die. A major drawback for non-repellent liquid treatments is that liquid termiticides in this class are still so new that there are questions about how long they will last in the soil, especially when exposed to sun and weather. The subject invention protects the foraging matrix from the sun and weather conditions in order to prolong its' usability, and the foraging matrix can be continuously replaced as necessary to recharge the system. The application of liquid termiticide barriers requires several hundred gallons of insecticide that is pumped under structures, such as houses, and can sometimes result in the contamination of the house interior, as well as water supply wells. Most homeowners have been known to want termicide applications that are less intrusive and disruptive.
Bait type station techniques and systems are again not practical since the bait stations require a food source that is palatable to termites. Selecting the appropriate food source can be difficult. While wood is a known food source, wood is very inconsistent in composition, so manufacturers don't like to use it with toxicants.
Other known food sources such as paper food sources have other problems. For example, if paper is not packed tightly enough, it will be emptied by termites and not be able to deliver enough toxicants to kill large numbers of termites. Most cellulose material will rot when placed in the soil. Once the cellulose material food source goes bad, termites will not feed, renderin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Above ground non-edible foraging matrix configurations for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Above ground non-edible foraging matrix configurations for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Above ground non-edible foraging matrix configurations for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3107918

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.