Ablation catheter with covered electrodes allowing...

Surgery – Instruments – Electrical application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S372000

Reexamination Certificate

active

06582429

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to an electrophysiological (“EP”) catheter for providing energy to biological tissue within a biological site, and more particularly, to an EP catheter having a surface covering over its electrodes that prevents adhesion of coagulum forming blood platelets to the electrode surface while still allowing electrical conduction therethrough.
2. Description of the Related Art
The heart beat in a healthy human is controlled by the sinoatrial node (“S-A node”) located in the wall of the right atrium. The S-A node generates electrical signal potentials that are transmitted through pathways of conductive heart tissue in the atrium to the atrioventricular node (“A-V node”) which in turn transmits the electrical signals throughout the ventricle by means of the His and Purkinje conductive tissues. Improper growth of, or damage to, the conductive tissue in the heart can interfere with the passage of regular electrical signals from the S-A and A-V nodes. Electrical signal irregularities resulting from such interference can disturb the normal rhythm of the heart and cause an abnormal rhythmic condition referred to as “cardiac arrhythmia.”
While there are different treatments for cardiac arrhythmia, including the application of anti-arrhythmia drugs, in many cases ablation of the damaged tissue can restore the correct operation of the heart. Such ablation can be performed by percutaneous ablation, a procedure in which a catheter is percutaneously introduced into the patient and directed through an artery to the atrium or ventricle of the heart to perform single or multiple diagnostic, therapeutic, and/or surgical procedures. In such case, an ablation procedure is used to destroy the tissue causing the arrhythmia in an attempt to remove the electrical signal irregularities or create a conductive tissue block to restore normal heart beat or at least an improved heart beat. Successful ablation of the conductive tissue at the arrhythmia initiation site usually terminates the arrhythmia or at least moderates the heart rhythm to acceptable levels. A widely accepted treatment for arrhythmia involves the application of RF energy to the conductive tissue.
In the case of atrial fibrillation (“AF”), a procedure published by Cox et al. and known as the “Maze procedure” involves continuous atrial incisions to prevent atrial reentry and to allow sinus impulses to activate the entire myocardium. While this procedure has been found to be successful, it involves an intensely invasive approach. It is more desirable to accomplish the same result as the Maze procedure by use of a less invasive approach, such as through the use of an appropriate EP catheter system providing RF ablation therapy. In this therapy, transmural ablation lesions are formed in the atria to prevent atrial reentry and to allow sinus impulses to activate the entire myocardium.
During ablation, electrodes carried by an EP catheter are placed in intimate contact with the target endocardial tissue. RF energy is applied to the electrodes to raise the temperature of the target tissue to a non-viable state. In general, the temperature boundary between viable and non-viable tissue is approximately 48° Celsius. Tissue heated to a temperature above 48° C. becomes non-viable and defines the ablation volume. The objective is to elevate the tissue temperature, which is generally at 37° C., fairly uniformly to an ablation temperature above 48° C., while keeping both the temperature at the tissue surface and the temperature of the electrode below 100° C. When the blood temperature reaches approximately 100° C., coagulum generally occurs.
Blood coagulation is a major limitation/complication associated with RF ablation therapy. Coagulation can lead to thromboembolism and can also form an insulating layer around the electrode hindering further energy delivery required for ablation therapy. Heat appears to be a major factor in the formation of blood coagulum on a catheter electrode. During a typical RF energy ablation procedure using an EP catheter, on or more electrodes carried by the catheter are positioned such that a portion of the electrodes are in contact with the tissue being ablated while the remaining portion of the electrodes are in contact with blood. The RF energy applied during the procedure resistively heats the tissue which in turn heats the electrode through conduction. As blood stays in contact with the heated electrode, platelet activation occurs. This platelet activation appears to lead to coagulum formation.
Hence, those skilled in the art have recognized a need for providing a catheter with ablation electrodes that reduce or inhibit the formation of coagulum by preventing platelets and other substances from adhering to the electrode surface all without adversely affecting the electrical conductivity of the ablation electrode. The invention fulfills these needs and others.
SUMMARY OF THE INVENTION
Briefly, and in general terms, the invention is directed to an ablation catheter having a surface covering over its electrodes that prevents adhesion of blood platelets to the electrode surface while still allowing electrical conduction therethrough.
In a first aspect, the invention relates to a catheter for applying energy to biological tissue having biological fluid flowing thereby. The catheter includes a shaft having at least one electrode and a layer of a bio-compatible, non-electrically conductive porous structure covering at least a portion of the surface of the electrode. By incorporating a bio-compatible, non-electrically conductive porous structure coating or covering over the ablation electrode adhesion of blood platelets on the electrode surface is prevented or at least substantially minimized. As such, coagulum causing components of the blood cannot contact the electrode and coagulation cannot begin and therefore, not propagate.
In a detailed facet of the invention the bio-compatible, non-electrically conductive porous structure is a polymer structure and may include either one of a porous homopolymer or a porous copolymer. In a further detailed aspect, the porous homopolymer and the porous copolymer is based on anyone of polyurethanes, polyesters, polyolefins, polyamides, ionomers and fluoropolymers. In another detailed facet, the catheter further includes a layer of a metallic element covering the interiorwalls of the pores of the bio-compatible, non-electrically conductive porous structure. In yet another detailed aspect the catheter further includes a layer of a wetting agent covering the metallic element. In the absence of the metallic element, the interior walls of the bio-compatible, non-electrically conductive porous structure may be covered with a secondary surface such as a hydrophilic material or a plasma modified material. In another detailed aspect of the invention, the electrode includes a first surface portion and a second surface portion; the shaft is adapted to position the electrode adjacent the biological tissue such that the first surface portion contacts the tissue and the second surface portion remains in the fluid; and the layer of a bio-compatible, non-electrically conductive porous structure covers the first surface portion. In a further detailed aspect the catheter further comprises a layer of bio-compatible, non-electrically conductive structure covering the second surface portion.
In another aspect, the invention relates to a catheter for applying energy to biological tissue having biological fluid flowing thereby. The catheter includes a shaft having a curved distal-end region with an inner surface and an outer surface and a plurality of band electrodes positioned at the distal-end region of the shaft. The catheter further includes a surface covering including a first portion comprising a bio-compatible, non-electrically conductive porous structure covering a portion of each of the band electrodes.
In a detailed aspect of the invention, the surface covering further covers a portion of the shaft between band electrodes.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ablation catheter with covered electrodes allowing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ablation catheter with covered electrodes allowing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ablation catheter with covered electrodes allowing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3143954

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.