Abbe arm calibration system for use in lithographic apparatus

Radiant energy – Means to align or position an object relative to a source or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S548000, C250S557000, C250S566000, C356S399000, C356S400000, C356S401000

Reexamination Certificate

active

06730920

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the calibration of the Abbe arm in lithographic apparatus. More particularly, the invention relates to a system for calibration of the Abbe arm in lithographic projection apparatus comprising:
an illumination system for supplying a projection beam of radiation;
a first object table for holding patterning means capable of patterning the projection beam according to a desired pattern;
a second object table for holding a substrate;
a projection system for imaging the patterned beam onto a target portion of the substrate; and
a positioning system for moving said second object table between an exposure position, at which said projection system can image said mask portion onto said substrate, and a measurement position.
2. Description of the Related Art
The term “patterning means” should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” has also been used in this context. Generally, the said pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such patterning means include:
A mask held by said first object table. The concept of a mask is well known in lithography, and its includes mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. Placement of such a mask in the projection beam causes selective transmission (in the case of a transmissive mask) or reflection (in the case of a reflective mask) of the radiation impinging on the mask, according to the pattern on the mask. The first object table ensures that the mask can be held at a desired position in the incoming projection beam, and that it can be moved relative to the beam if so desired.
A programmable mirror array held by a structure, which is referred to as first object table. An example of such a device is a matrix-addressable surface having a viscoelastic control layer and a reflective surface. The basic principle behind such an apparatus is that (for example) addressed areas of the reflective surface reflect incident light as diffracted light, whereas unaddressed areas reflect incident light as undiffracted light. Using an appropriate filter, the said undiffracted light can be filtered out of the reflected beam, leaving only the diffracted light behind; in this manner, the beam becomes patterned according to the addressing pattern of the matrix-addressable surface. The required matrix addressing can be performed using suitable electronic means. More information on such mirror arrays can be gleaned, for example, from U.S. Pat. Nos. 5,296,891 and 5,523,193, which are incorporated herein by reference.
A programmable LCD array held by a structure, which is referred to as first object table. An example of such a construction is given in U.S. Pat. No. 5,229,872, which is incorporated herein by reference.
For purposes of simplicity, the rest of this text may, at certain locations, specifically direct itself to examples involving a mask; however, the general principles discussed in such instances should be seen in the broader context of the patterning means as hereabove set forth.
The projection system may hereinafter be referred to as the “lens”; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example. The illumination system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a “lens”. In addition, the first and second object tables may be referred to as the “mask table” and the “substrate table”, respectively.
Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the patterning means may generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist). In general, a single wafer will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time. In current apparatus, employing patterning by a mask on a mask table, a distinction can be made between two different types of machine. In one type of lithographic projection apparatus, each target portion is irradiated by exposing the entire mask pattern onto the target portion at once; such an apparatus is commonly referred to as a wafer stepper. In an alternative apparatus—commonly referred to as a step-and-scan apparatus—each target portion is irradiated by progressively scanning the mask pattern under the projection beam in a given reference direction (the “scanning” direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally <1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. More information with regard to lithographic devices as here described can be gleaned, for example, from U.S. Pat. No. 6,046,792, incorporated herein by reference.
In general, apparatus of this type contained a single first object (mask) table and a single second object (substrate) table. However, machines are becoming available in which there are at least two independently movable substrate tables; see, for example, the multi-stage apparatus described in U.S. Pat. No. 5,969,441 and U.S. application Ser. No. 09/180,011, filed Feb. 27, 1998 (WO 98/40791), incorporated herein by reference. The basic operating principle behind such a multi-stage apparatus is that, while a first substrate table is underneath the projection system so as to allow exposure of a first substrate located on that table, a second substrate table can run to a loading position, discharge an exposed substrate, pick up a new substrate, perform some initial metrology steps on the new substrate, and then stand by to transfer this new substrate to the exposure position underneath the projection system as soon as exposure of the first substrate is completed, whence the cycle repeats itself; in this manner, it is possible to achieve a substantially increased machine throughout, which in turn improves the cost of ownership of the machine.
The measurement performed on the substrate at the measurement position may, for example, include a determination of the spatial relationship (in X & Y directions) between various contemplated target areas on the substrate (die, areas) and a reference marker (e.g. fiducial) located on the second object table outside the area of the substrate. Such information can subsequently be employed at the exposure position to perform a fast and accurate leveling of the target areas with respect to the projection beam; for more information see WO 99/32940 (P-0079), for example. This document also describes the preparation at the measurement position of a height map relating the Z position of the substrate surface at an array of points to a reference plane of the second object table. However the reference plane is defined by a Z-interferometer at the measurement position and a different Z-interferometer is used at the at the exposure position. It IS therefore necessary to know accurately the relationship between the two Z-interferometers.
The so-called Abbe arms AAx, AAy in a lithograph device are the distances between the surface of the substrate, when mounted on the second object table, and the axes of rotation of the second object tabl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Abbe arm calibration system for use in lithographic apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Abbe arm calibration system for use in lithographic apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Abbe arm calibration system for use in lithographic apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259967

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.