AAMI specification optimized truncated exponential waveform

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

607 7, A61N 139

Patent

active

059447427

ABSTRACT:
A method of generating and applying a defibrillation shock of the present invention includes first applying a defibrillation shock pulse to a patient with an initial predetermined amount of energy not based on a patient-dependent electrical parameter, and while monitoring a patient-dependent electrical parameter. Next, patient transthoracic impedance is determined based on the patient-dependent electrical parameter. Finally, a subsequent predetermined amount of energy is applied to the patient based on the patient transthoracic impedance calculated above and while monitoring the patient-dependent electrical parameter. Subsequent defibrillation shock pulses are applied using a patient impedance based on the patient-dependent electrical parameter observed during the most recent defibrillation shock. In this manner, an optimal combination of charged voltage and the maximum allowed current (under the AAMI defibrillation waveform standard) is applied for a patient's given transthoracic impedance.

REFERENCES:
patent: 4768512 (1988-09-01), Imran
patent: 5088489 (1992-02-01), Lerman
patent: 5230336 (1993-07-01), Fain et al.
patent: 5391186 (1995-02-01), Kroll et al.
patent: 5431686 (1995-07-01), Kroll et al.
patent: 5593427 (1997-01-01), Gilner et al.
patent: 5601612 (1997-02-01), Gilner et al.
patent: 5607454 (1997-03-01), Cameron et al.
patent: 5645571 (1997-07-01), Olson et al.
patent: 5733310 (1998-03-01), Lopin et al.
On The Intensity-Time Relations for Stimulation by Electric Currents. II, H.A. Blair, The Journal of General Physiology, Rockefeller Institute for Medical Research, vol. 15, pp. 731-755, 1932.
Optimal Truncation of Defibrillation Pulses, Werner Irnich, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 18, No. 4, pp. 673-688, Apr. 1995.
Choosing the Optimal Monophasic and Biphasic Waveforms for Ventricular Defibrillation, G.P. Walcott, R. G. Walker, A. W. Cates, W. Krassowska, W.M. Smith, R.E. Ideker, Journal of Cardiovascular Electrophysiology, Futura Publishing Co., vol. 6, No. 9, pp. 737-750, Sep. 1995.
Optimizing Defibrillation Through Improved Waveforms, Michael Block and Gunter Breithardt, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 18, No. 3, Part II, pp. 526-538, Mar. 1995.
A Conceptual Basis for Defibrillation Waveforms, Brian G. Cleland, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 19, No. 8, pp. 1186-1195, Aug. 1996.
A Minimal Model of the Single Capacitor Biphasic Defibrillation Waveform, Mark W. Kroll, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 17, No. 11, Part I, pp. 1782-1792, Nov. 1994.
On The Intensity-Time Relations For Stimulation By Electric Currents, I, H.A. Blair, The Journal of General Physiology, Rockefeller Institute for Medical Research, vol. 15, pp. 709-729, 1932.
Ventricular Defibrillation Using Biphasic Waveforms: The Importance of Phasic Duration, A.S.L. Tang, S. Yabe, J.M. Wharton, M. Doker, W.M.Smith, R.E. Ideker, Journal of the American College of Cardiology, American College of Cardiology, vol. 13, No. 1, pp. 207-214, Jan. 1989.
A Minimal Model of the Monophasic Defibrillation Pulse, Mark W. Kroll, Pacing and Clinical Electrophysiology, Futura Publishing Co., vol. 16, No. 4, Part I, pp. 769-777, Apr. 1993.
Strength-Duration and Probability of Success Curves for Defibrillation With Biphasic Waveforms, S.A. Feeser, A.S.L. Tang, K.M. Kavanagh, D.L. Rollins, W.M. Smith, P.D. Wolf, R.E. Ideker, Circulation, American Heart Association, vol. 82, No. 6, pp. 2128-2141, Dec. 1990.
Improved Defibrillation Thresholds With Large Contoured Epicardial Electrodes and Biphasic Waveforms, E.G. Dixon, A.S.L. Tang, P.D. Wolf, J.T. Meador, M.J. Fine, R.V. Calfee, R.E. Ideker, Circulation, American Heart Association, vol. 76, No. 5, pp. 1176-1184, Nov. 1987.
Truncated Biphasic Pulses for Transthoracic Defibrillation, G.H. Bardy, B.E. Gliner, P.J. Kudenchuk, J.E. Poole, G.L. Dolack, G. K. Jones, J. Anderson, C. Troutman, G. Johnson, Circulation, American Heart Association, vol. 91, No. 6, pp. 1768-1774, Mar. 1995.
Transthoracic Defibrillation of Swine With Monophasic and Biphasic Waveforms, B.E. Gliner, T.E. Lyster, S.M. Dillion, G.H. Bardy, Circulation, American Heart Association, vol. 92, No. 6, pp. 1634-1643, Sep. 1995.
Multicenter Comparison of Truncated Biphasic Shocks and Standard Damped Sine Wave Monophasic Shocks for Transthoracic Ventricular Defibrillation, G.H. Bardy, F.E. Marchlinski, A.D. Sharma, S.J. Worley, R.M. Luceri, R. Yee, B.D. Halperin, C.L. Fellows, T.S. Ahern, D.A. Chilson, D.L. Packer, D.J. Wilber, T.A. Mattioni, R. Reddy, R.A. Kronmal, R. Lazzara, Circulation, American Heart Associate, vol. 94, No.10, pp. 2507-2514, Nov. 1996.
Cardiac Defibrillator Devices, 3rd Edition, AAMI/FDS DF2, Association for the Advancement of Medical Instrumentation, Arllington, Virginia, p. ii-60, 1996.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

AAMI specification optimized truncated exponential waveform does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with AAMI specification optimized truncated exponential waveform, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and AAMI specification optimized truncated exponential waveform will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2425148

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.