69voice authentication system and method for regulating...

Data processing: speech signal processing – linguistics – language – Speech signal processing – Application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C704S270000, C704S272000, C704S231000, C704S275000, C600S300000, C600S407000

Reexamination Certificate

active

06463415

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to voice-based identification systems and more particularly to a border crossing system utilizing voice analysis.
BACKGROUND OF THE INVENTION
Currently available physical token authentication devices which are frequently used for identifying an individual, such as crypto cards or limited access cards, has a problem of low security protection, since such cards can be lost, stolen, loaned to an unauthorized individual and/or duplicated.
Another and more sophisticated approach for authentication, which is used to provide higher security protection, is known in the art as biometric authentication. Biometric authentication involves identification via authentication of unique body characteristics, such as, fingerprints, retinal scans, facial recognition and voice pattern authentication.
Please note that, as used herein and in the art of voice analysis, voice pattern authentication differs from voice pattern recognition. In voice pattern recognition the speaker utters a phrase (e.g., a word) and the system determines the spoken word by selecting from a pre-defined volcabulary. Therefore, voice recognition provides for the ability to recognize a spoken phrase and not the identity of the speaker.
Retinal scanning is based on the fact that retinal blood vessel patterns are unique and do not change over lifetime. Although this feature provides high degree of security, retinal scanning has limitations since it is expensive and requires complicated hardware and software for implementation.
Finger printing and facial recognition also requires expensive and complicated hardware and software for implementation.
Voice verification, which is also known as voice authentication, voice pattern authentication, speaker identity verification and voice print, is used to provide the speaker identification. The terms voice verification and voice authentication are interchangeably used hereinbelow. Techniques of voice verification have been extensively described in U.S. Pat. Nos. 5,502,759; 5,499,288; 5,414,755; 5,365,574; 5,297,194; 5,216,720; 5,142,565; 5,127,043; 5,054,083; 5,023,901; 4,468,204 and 4,100,370, all of which are incorporated by reference as if fully set forth herein. These patents describe numerous methods for voice verification.
Voice authentication seeks to identify the speaker based solely on the spoken utterance. For example, a speaker's presumed identity may be verified using a feature extraction and pattern matching algorithms, wherein pattern matching is performed between features of a digitized incoming voice print and those of previously stored reference samples. Features used for speech processing involve, for example, pitch frequency, power spectrum values, spectrum coefficients and linear prediction coding, see B. S. Atal (1976) Automatic recognition of speakers from their voice. Proc. IEEE, Vol. 64, pp. 460-475, which is incorporated by referencea as if fully set forth herein.
Alternative techniques for voice identification include, but are not limited to, neural network processing, comparison of a voice pattern with a reference set, password verification using, selectively adjustable signal thresholds, and simultaneous voice recognition and verification.
State-of-the-art feature classification techniques are described in S. Furui (1991) Speaker dependent-feature extraction, recognition and processing techniques. Speech communications, Vol. 10, pp. 505-520, which is incorporated by reference as if fully set forth herein.
Text-dependent speaker recognition methods rely on analysis of predetermined utterance, whereas text-independent methods do not rely on any specific spoken text. In both case, however, a classifier produces the speaker's representing metrics which is thereafter compared with a preselected threshold. If the speaker's representing metrics falls below the threshold the speaker identity is confirmed and if not, the speaker is declared an imposter.
The relatively low performance of voice verification technology has been one main reason for its cautious entry into the marketplace. The “Equal Error Rate” (EER) is a calculation algorithm which involves two parameters: false acceptance (wrong access grant) and false rejection (allowed access denial), both varying according the degree of secured access required, however, as shown below, exhibit a tradeoff therebetween. State-of-the-art voice verification algorithms (either text-dependent or text-independent) have EER values of about 2%.
By varying the threshold for false rejection errors, false acceptance errors are changing as graphically depicted in
FIG. 1
of J. Guavain, L. Lamel and B. Prouts (March, 1995) LIMSI 1995 scientific report, which is incorporated by reference as if fully set forth herein. In this Figure presented are five plots which correlate between false rejection rates (abscissa) and the resulting false acceptance rates for voice verification algorithms characterized by EER values of 9.0%, 8.3%, 5.1%, 4.4% and 3.5%. As mentioned above there is a tradeoff between false rejection and false acceptance rates, which renders all plots hyperbolic, wherein plots associated with lower EER values fall closer to the axes.
Thus, by setting the system for too low false rejection rate, the rate of false acceptance becomes too high and vice versa.
Various techniques for voice-based security systems are described in U.S. Pat. Nos. 5,265,191; 5,245,694; 4,864,642; 4,865,072; 4,821,027; 4,797,672; 4,590,604; 4,534,056; 4,020,285; 4,013,837; 3,991,271; all of which are incorporated by reference as if fully set forth herein. These patents describe implementation of various voice-security systems for different applications, such as telephone networks, computer networks, cars and elevators.
However, none of these techniques provides the required level of performance, since when a low rate of false rejection is set, the rate of false acceptance becomes unacceptably high and vice versa.
It has been proposed that speaker verification must have false rejection in the range of 1% and false acceptance in the range of 0.1% in order to be accepted in the market.
There is thus a widely recognized need for, and it would be highly advantageous to have a more reliable and secured voice authentication system, having improved false acceptance and rejection rates.
SUMMARY OF THE INVENTION
A system, method and article of manufacture are provided for regulating border crossing based on voice signals. First, voice signals are received from a person attempting to cross a border. The voice signals of the person are analyzed to determine whether the person meets predetermined criteria to cross the border. Then, an indication is output as to whether the person meets the predetermined criteria to cross the border.
In one embodiment of the present invention, an identity of the person is determined from voice signals. In such an embodiment, the predetermined criteria may include having an identity that is included on a list of persons allowed to cross the border. Preferably, the voice signals of the person are compared to a plurality of stored voice samples to determine the identity of the person. Each of the voice samples is associated with an identity of a person. The identity of the person is output if the identity of the person is determined from the comparison of the voice signal with the voice samples.
In another embodiment of the present invention, emotion is detected in the voice signals of the person. Here, the predetermined criteria could include emotion-based criteria. One of the emotions that could be detected is a level of nervousness of the person, which can be used to help detect smuggling and other illegal activities.


REFERENCES:
patent: 3855416 (1974-12-01), Fuller
patent: 3971034 (1976-07-01), Bell, Jr. et al.
patent: 4093821 (1978-06-01), Williamson
patent: 4142067 (1979-02-01), Williamson
patent: 4472833 (1984-09-01), Turrell et al.
patent: 4490840 (1984-12-01), Jones
patent: 4592086 (1986-05-01), Watari et al.
patent: 4602129 (1986-07-01), Matthews et al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

69voice authentication system and method for regulating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 69voice authentication system and method for regulating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 69voice authentication system and method for regulating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2999977

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.