Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Cyclopentanohydrophenanthrene ring system doai
Reexamination Certificate
1999-12-23
2004-03-16
Badio, Barbara P. (Department: 1616)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Cyclopentanohydrophenanthrene ring system doai
C514S178000, C552S561000, C552S552000, C552S610000
Reexamination Certificate
active
06706701
ABSTRACT:
TECHNICAL FIELD
The invention is directed to steroid compounds and in particular to 6,7-oxygenated steroid compounds and therapeutic uses related thereto.
BACKGROUND OF THE INVENTION
Asthma and allergy are closely related with good evidence from clinical studies demonstrating a strong correlation between the severity of asthma and the degree of atopy (allergy). Sensitization to allergens is believed to be the most important risk factor for asthma in both children and adults, with approximately 90% of asthma cases exhibiting atopy.
Allergy is characterized by an increased blood serum IgE (antibody) level. Repeated exposure to allergens, in a process called sensitization, is normally required to elicit sufficient B cell production of IgE specific to a given allergen or series of allergens to trigger atopy and the subsequent asthmatic or allergic response. Once B cells are exposed to allergens they produce antibodies which bind to the surface of mast cells. The crosslinking of 2 antibodies by the antigen causes a series of reactions causing degranulation and the release of a number of mediators which modulate the inflammatory response. Mediators that are released or generated during the asthmatic and allergic response include histamine, leukotrienes, prostaglandins, cytokines and tryptase.
Asthma is characterized by hyperresponsiveness of the airways, episodic periods of bronchospasm and chronic inflammation of the lungs. Obstruction of the airways is reversible with time or in response to drug therapies. Patients exhibiting normal airflow may be hyperreactive to a variety of naturally occurring stimuli, e.g., cold air, exercise, chemicals and allergen. The most common event initiating an asthmatic response is an immediate hypersensitivity to common allergens including ragweed pollen, grass pollen, various fungi, dust mites, cockroaches and domestic animals. The symptoms of the disease include chest tightness, wheezing, shortness of breath and coughing. Mild forms of the disease occur in up to 10% of the U.S. population, while the U.K., Australia and New Zealand report higher prevalences. Asthma incidence and mortality has been increasing worldwide, doubling over the past 20 years despite modern therapies.
The response of the airways to allergen is complex and consists of an early asthmatic response (EAR) which peaks 20-30 min after exposure to the stimuli, is characterized by bronchoconstriction and normally resolves after 1½ to 2 hours. The late asthmatic response (LAR) generally occurs 3-8 hours after initial exposure, and involves both bronchoconstriction and the development of inflammation and edema in the lung tissue. This inflammation often becomes chronic, with epithelial damage occurring and infiltration of the lungs with inflammatory cells such as eosinophils and neutrophils.
Current Treatments for Asthma
Glucocorticosteroids (steroids) are the most effective long-term therapy for the treatment of asthma. Oral steroids are not very useful for the control of acute asthma attacks and their chronic use in the control of asthma is minimal due to the introduction of inhaled steroids. Due to the presence of airway inflammation even in mild asthma, inhaled steroids are used even in early stage drug therapy. As effective as inhaled steroids are, side effects limit their use and combination therapy is often employed. Combination therapy is divided into the following areas: anti-inflammatory drugs (e.g., inhaled and oral steroids), bronchodilators, (e.g., &bgr;
2
-agonists, xanthines, anticholinergics), and mediator inhibitors (e.g., cromolyns and leukotriene antagonists).
Cromolyns (e.g., disodium cromoglycate and nedocromil) inhibit the release of histamine in vitro and prevent bronchial hyperreactivity, while displaying few side effects. They are not effective orally and have no bronchodilator effect. Usually chronic treatment (several days) is required to achieve optimal anti-inflammatory effect, though cromolyns exhibit beneficial effects against exercise-induced asthma when administered only 10 minutes prior to exercise. Cromolyns are, at best, only marginally effective against moderate to severe asthma.
Glucocorticosteroids (steroids) have profound effects against lung inflammation, and are by far the most effective drugs for the treatment of asthma and allergies. In mast cells they inhibit the production of arachidonic acid metabolites (leukotrienes and prostaglandins) and cytokines. Responses to inhaled steroids or systemic steroids can occur within 4 hours but may take several days depending on the severity of the disease state. Symptoms often return without regular chronic treatment. Side effects of inhaled steroids used on a continual basis include dysphonia, local irritation and oral candidiasis (a fungal infection). Higher doses of inhaled steroids cause suppression of the HPA-axis which is responsible for the regulation of serum cortisol levels, metabolism, stress, CNS function and immunity. Continuous use of high dose inhaled steroids or oral steroids induce more severe side effects: severe suppression of the HPA axis, causing effects on the immune system, hypertension, osteoporosis, peptic ulcers, growth retardation in children, behavioral problems, reproductive problems, cataracts and hematological disorders.
Beta-agonists reverse the bronchospasm produced during an asthmatic attack and have a modest activity against the onset of the response. Their routes of administration and duration of action are variable. Prolonged use of these agents can cause decreased response to the therapy itself with the development of tolerance. These compounds have no effect on the inflammatory response itself.
Xanthines, which are cyclic AMP phosphodiesterase inhibitors, are also used in bronchodilator therapy. Though effective, xanthine activity is influenced by a number of factors including food, age, smoking, etc. The therapeutic window is relatively narrow and side effects include gastrointestinal disorders, CNS disturbances, headache, anxiety and cardiac arrhythmias. The importance of treatment of inflammation in asthma and allergy has led to a decline in the use of xanthines for therapy.
Anticholinergic agents such as ipratropium bromide are used to block the contraction of bronchial smooth muscle induced by acetylcholine released as a neurotransmitter. Some positive effects are reported in asthma, with these drugs being most effective against chronic obstructive pulmonary disease. A large number of side effects are seen with these drugs including urinary retention, dry mouth, tachycardia, nausea, vomiting, flushing and hypertension.
Inhibitors of 5-lipoxygenase inhibit the generation of leukotrienes, while leukotriene antagonists prevent the action of leukotrienes, which are potent bronchospastic mediators released during an asthmatic reaction. Use of leukotriene synthesis inhibitors has been associated with increased liver enzymes, indicating the need to monitor liver function closely in certain patient populations. Leukotriene inhibitors have shown comparative activity to the cromolyns, and activity equivalent to low dose corticosteroids.
In general, moderate to severe asthma patients are poorly served by the present armamentarium of drugs. Drugs that are safe are only marginally effective, while effective drugs have unacceptable side effects with extensive monitoring of patients required. There is a significant need for therapeutic agents that achieve safe and effective relief of asthma and allergy symptoms. The present invention provides these and related benefits as described herein.
SUMMARY OF THE INVENTION
One aspect of the invention provides compounds of the formula:
including pharmaceutically acceptable salts and solvates thereof, wherein:
each of C1, C2, C3, C4, C11, C12, C15 and C16 is independently substituted according to any of (a) and (b):
(a) one of: ═O,═C(R
4
)(R
4
), —C(R
4
)(R
4
)(C(R
4
)(R
4
))
n
— and —(O(C(R
4
)(R
4
))
n
O)— wherein n ranges from 1 to about 6;
(b) two of: —X, —R
4
and —OR
1
, each independently selected;
each of C5,
Burgoyne David L.
Chau Joseph H.-L.
Langlands John M.
Piers Edward
Rogers Christine
Badio Barbara P.
Inflazyme Pharmaceuticals Ltd.
Seed IP Law Group PLLC
LandOfFree
6, 7-oxygenated steroids and uses related thereto does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 6, 7-oxygenated steroids and uses related thereto, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 6, 7-oxygenated steroids and uses related thereto will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3266577