4-substituted quinoline derivatives

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S312000, C514S313000, C546S153000, C546S159000, C546S167000

Reexamination Certificate

active

06413982

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to quinoline derivatives, pharmaceutical compositions comprising them, and the use of such compounds in the treatment of central nervous system and peripheral diseases or disorders. This invention also relates to the use of such compounds in combination with one or more other CNS agents to potentiate the effects of the other CNS agents. The compounds of this invention are also useful as probes for the localization of cell surface receptors.
2. Description of the Related Art
The tachykinins represent a family of structurally related peptides originally isolated based upon their smooth muscle contractile and sialogogic activity. These mammalian peptides include substance P (SP), neurokinin A (NKA) and neurokinin &bgr; (NKB). Tachykinins are synthesized in the central nervous system (CNS), as well as in peripheral tissues, where they exert a variety of biological activities. Substance P can be produced from three different mRNAs (&agr;-, &bgr;- and &ggr;-preprotachykinin mRNAs) that arise from a single gene as a result of alternative RNA splicing, whereas NKA can be generated from either the &bgr;- or the &ggr;-preprotachykinin MRNA through posttranslationally processed precursor polypeptides. These precursors can also be differentially processed so that amino terminally extended forms of NKA (known as neuropeptide K and neuropeptide &ggr;) are produced. NKB is produced from a separate mRNA arising from a second gene known as preprotachykinin B.
Three receptors for the tachykinin peptides have been moleculary characterized and are referred to as neurokinin-1 (NK-1), neurokinin-2 (NK-2) and neurokinin-3 (NK-3) receptors. The NK-1 receptor has a natural agonist potency profile of SP>NKA>NKB. The NK-2 receptor agonist potency profile is NKA>NKB>SP, and the NK-3 receptor agonist potency profile is NKB>NKA>SP. These receptors mediate the variety of tachykinin-stimulated biological effects that generally include 1) modulation of smooth muscle contractile activity, 2) transmission of (generally) excitatory neuronal signals in the CNS and periphery (e.g. pain signals), 3) modulation of immune and inflammatory responses, 4) induction of hypotensive effects via dilation of the peripheral vasculature, and 5) stimulation of endocrine and exocrine gland secretions. These receptors transduce intracellular signals via the activation of pertussis toxin-insensitive (G
&agr;q/11
) G proteins, resulting in the generation of the intracellular second messengers inositol 1,4,5-trisphosyphate and diacylglycerol. NK-1 receptors are expressed in a wide variety of peripheral tissues and in the CNS. NK-2 receptors are expressed primarily in the periphery, while NK-3 receptors are primarily (but not exclusively) expressed in the CNS. Recent work confirms the presence of NK-3 receptor binding sites in the human brain.
Studies measuring the localization of NKB and NK-3 receptor mRNAs and proteins, along with studies performed using peptide agonists and non-peptide NK-3 receptor antagonists, provide a rationale for using NK-3 receptor antagonists in treating a variety of disorders in both the CNS and the periphery. In the CNS, activation of NK-3 receptors has been shown to modulate dopamine and serotonin release, indicating therapeutic utility in the treatment of a variety of disorders including anxiety, depression, schizophrenia and obesity. Further, studies in primate brain detect the presence of NK-3 MRNA in a variety of regions relevant to these disorders. With regard to obesity, it has also been shown that NK-3 receptors are located on MCH-containing neurons in the rat lateral hypothalamus and zona incerta. In the periphery, administration of NKB into the airways is known to induce mucus secretion and bronchoconstriction, indicating therapeutic utility for NK-3 receptor antagonists in the treatment of patients suffering from airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Localization of NK-3 receptors in the gastrointestinal (GI) tract and the bladder indicates therapeutic utility for NK-3 receptor antagonists in the treatment of GI and bladder disorders including inflammatory bowel disease and urinary incontinence.
Both peptide and nonpeptide antagonists have been developed for each of the tachykinin receptors. The first generation of peptide antagonists for the tachykinin receptors had problems with low potency, partial agonism, poor metabolic stability and toxicity, whereas the current generation of non-peptide antagonists display more drug-like properties. Unfortunately, previous non-peptide NK-3 receptor antagonists suffer from a number of problems such as species selectivity (which limits the potential to evaluate these compounds in many appropriate disease models). New non-peptide NK-3 receptor antagonists are therefore being sought, both as therapeutic agents and as tools to further investigate the anatomical and ultrastructural distribution of NK-3 receptors, as well as the physiologic and pathophysiologic consequences of NK-3 receptor activation.
The GABA
A
receptor superfamily represents one of the classes of receptors through which the major inhibitory neurotransmitter, &ggr;-aminobutyric acid, or GABA, acts. Widely, although unequally, distributed through the mammalian brain, GABA mediates many of its actions through a complex of proteins called the GABA
A
receptor, which causes alteration in chloride conductance and membrane polarization.
A number of cDNAs for GABA
A
receptor subunits have been characterized. To date at least 6&agr;, 3&bgr;, 3&ggr;, 1&egr;, 1&dgr; and 2&rgr; subunits have been identified. It is generally accepted that native GABA
A
receptors are typically composed of 2&agr;, 2&bgr;, and 1&ggr; subunits (Pritchett & Seeburg
Science
1989; 245:1389-1392 and Knight et. al.,
Recept. Channels
1998; 6:1-18). Evidence such as message distribution, genome localization and biochemical study results suggest that the major naturally occurring receptor combinations are &agr;
1
&bgr;
2
&ggr;
2
, &agr;
2
&bgr;
3
&ggr;
2
, &agr;
3
&bgr;
3
&ggr;
2
, and &agr;
5
&bgr;
3
&ggr;
2
, (Mohler et. al. Neuroch. Res. 1995; 20(5): 631-636).
Benzodiazepines exert their pharmacological actions by interacting with the benzodiazepine binding sites associated with the GABA
A
receptor. In addition to the benzodiazepine site, the GABA
A
receptor contains sites of interaction for several other classes of drugs. These include a steroid binding site, a picrotoxin site, and the barbiturate site. The benzodiazepine site of the GABA
A
receptor is a distinct site on the receptor complex that does not overlap with the site of interaction for GABA or for other classes of drugs that bind to the receptor (see, e.g., Cooper, et al., The Biochemical Basis of Neuropharmacology, 6
th
ed., 1991, pp. 145-148, Oxford University Press, New York). Early electrophysiological studies indicated that a major action of the benzodiazepines was enhancement of GABAergic inhibition. Compounds that selectively bind to the benzodiazepine site and enhance the ability of GABA to open GABA
A
receptor channels are agonists of GABA receptors. Other compounds that interact with the same site but negatively modulate the action of GABA are called inverse agonists. Compounds belonging to a third class bind selectively to the benzodiazepine site and yet have little or no effect on GABA activity, but can block the action of GABA
A
receptor agonists or inverse agonists that act at this site. These compounds are referred to as antagonists.
The important allosteric modulatory effects of drugs acting at the benzodiazepine site were recognized early and the distribution of activities at different receptor subtypes has been an area of intense pharmacological discovery. Agonists that act at the benzodiazepine site are known to exhibit anxiolytic, sedative, and hypnotic effects, while compounds that act as inverse agonists at this site elicit anxiogenic, cognition enhancing, and proconvulsant effects. While benzodia

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

4-substituted quinoline derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 4-substituted quinoline derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 4-substituted quinoline derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900569

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.