3D ultrasonic diagnostic apparatus

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S916000

Reexamination Certificate

active

06245017

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a 3D (three-dimensional) ultrasonic diagnostic apparatus which visualizes a 3D region within a human body under examination and more specifically to a technique for improving the real-time imaging.
This application is based on Japanese Patent Application No. 10-311367 filed on Oct. 30, 1998 and Japanese Patent Application No. 10-316584 filed on Nov. 6, 1998, the entire content of which is incorporated herein by reference.
Recent 2D types of ultrasonic probes can scan a 3D region within a human body under examination with ultrasound to produce a 3D image. This type of scanning is referred to as 3D scanning or volume scanning. Whereas conventional 2D scanning is required only to move ultrasound along a plane section of a human body, the 3D scanning needs to move ultrasound in all directions within a 3D region of the human body. In order to reproduce natural movements of internal organs in real time, it is required to reduce the time required to scan the 3D region thoroughly for the purpose of improving temporal resolution (volume rate). That is, it is required to set the number of times that the 3D region is scanned every second to about 30 times per second as in the 2D scanning.
As is well known, the velocity of propagation of ultrasound through human body is nearly constant; therefore, the number of times per unit time that ultrasound is transmitted and received is limited. That is, since the time required for transmission and reception of an ultrasound beam is absolutely determined by the depth of field and the ultrasound propagation velocity, the transmission/reception rate is almost fixed.
In order to satisfy the real-time requirements of the 3D scanning, therefore, it is required to reduce the spatial resolution (the density of ultrasound scanning lines). In order to increase the number of ultrasound scanning lines per second, the adoption of a simultaneous reception scheme known as digital beam forming has been considered. However, even with the digital beam forming, echoes are only received from some directions at most for each transmission, resulting in a failure to gain sufficient spatial resolution. It might be expected to increase the spatial resolution by increasing the number of directions from which echoes are received simultaneously. However, this approach would require applied energy to be considerably high and therefore might cause damage to the array probe and fail to meet safety standards.
The ultrasonic 3D imaging method, as its typical operation, extracts concerned parts from 2D image data obtained, and superimposes the extracted concerned parts one on another to create a 3D image. In this method, therefore, part of 2D image data drops off.
Further, it is very useful in diagnosis to display a tissue image (B-mode image) and a blood-flow image (color Doppler image) in combination. However, the 3D representation capability is still being improved.
With the ultrasonic imaging, although its imaging range is narrower than the imaging range of X-ray computerized tomography apparatus and magnetic-resonance imaging apparatus, . . . This causes a problem in that it is difficult for an observer to understand the orientation and position of a 3D image in a human body under examination.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a 3D ultrasonic diagnostic apparatus which permits the compatibility of the attainment of relatively high spatial and temporal resolution with the provision of 3D image information.
The three-dimensional ultrasonic diagnostic apparatus of the present invention has an arrangement required to repeat a three-dimensional scan operation of scanning a three-dimensional region within a human body under examination intermittently with ultrasound and to repeat a two-dimensional scan operation of scanning a two-dimensional plane section within the three-dimensional region with ultrasound during the interval between each three-dimensional scan.
The three-dimensional ultrasonic diagnostic apparatus of the present invention has an arrangement required to scan two two-dimensional plane sections within a three-dimensionally scannable three-dimensional region with ultrasound and to display two images concerning the two plane sections in combination according to their positional relationship so that internal three-dimensional structure can be estimated.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combination particularly pointed out hereinafter.


REFERENCES:
patent: 4559952 (1985-12-01), Angelsen et al.
patent: 4596145 (1986-06-01), Smith et al.
patent: 5485842 (1996-01-01), Quistgaard
patent: 5497776 (1996-03-01), Yamazaki et al.
patent: 5546807 (1996-08-01), Oxaal et al.
patent: 5720291 (1998-02-01), Schwartz
patent: 5993391 (1999-11-01), Kamiyama
E. D. Light, et al. “Progress in Two-Dimensional Arrays for Real-Time Volumetric Imaging”, Ultrasonic Imaging, vol. 20, 1998, pp. 1-15.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

3D ultrasonic diagnostic apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 3D ultrasonic diagnostic apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3D ultrasonic diagnostic apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2456431

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.