3-dimensional visual system

Television – Stereoscopic – Stereoscopic display device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C353S074000

Reexamination Certificate

active

06445407

ABSTRACT:

BACKGROUND
1. Field of the Invention
This invention relates to personal visual systems specifically to 3 dimensional, user friendly visual systems.
2. Description of Prior Art
Personal visual systems in the prior art currently used in the home and at work are television sets and personal computers with monitors and both are 2 dimensional systems. 3 dimensional graphic are enhancing the screens but have along way to go. Personal computers use a desk top monitor that is usually very close to the user face. These monitors give off electromagnetic fields that are questionable to the observers health and especially those who use them for long periods of time. These monitors also are known to cause eye strain. With the monitor directly in front of the observer, the work to be performed must be placed to the left or right of the monitor causing neck strain and loss of place on your paper, and so loss of time. To achieve a 3 dimensional image in the prior art is a costly undertaking. Many complicated methods have been tried and many costly methods are not only monitory but also at the expense of distortion, blurring, clarity and loss of light.
In prior art Laurice J. West, U.S. Pat. No. 4,333,707 dated Jun. 8, 1982 talks in the Summary of the invention of a method of image enhancement by means of optical bending. The optical bending means produces a horizontal shift of points in the image such that the left and right eyes of the observer see a different spacing between pairs of points. A transparent sheet is formed in such away that there is distortion of the image by the undulations. An image magnification and reduction of 5% take place, hence distortion is evident to the observer.
One such attempt at depth simulation was described in U.S. Pat. No. 4,049,339, issued Sep. 20, 1977 to Antoine Ledan. Ledan described a pair of eyeglasses for movie viewing which are designed to produce a simulated three-dimensional effect. The eyeglasses have flat, triangular-shaped lenses in an opaque frame. These lenses are arranged so that the left edge of the image on the movie screen is obscured from view through the left eye, and so that the right edge of the image is obscured from view through the right eye. The eyeglasses described by Ledan produce the sensation of depth by the so-called “window effect”, i.e., by preventing the observer from determining the distance between himself and the movie screen. The effect described in the Leden patent is somewhat similar to the effect utilized to simulate depth in wide-screen and curved-screen movie systems. The purpose of the wide screen or the curved screen is to fill the observer's field of view, preventing him from seeing the edges of the screen and thereby determining the distance between his eyes and the screen.
Another approach to producing illusions of depth is described by Hugh M. Stevenson in his U.S. Pat. No. 2,922,998, dated Jan. 26, 1960. Stevenson described a television having, in front of the picture area, a sheet of transparent material with opaque or translucent vertical lines. According to Stevenson, the illusion of depth is due to the slightly different picture presentation for each eye combined with the placement of the substantially vertical parallel lines in front of and spaced apart from the plane of the picture presentation.
Another system for depth simulation was described by H. M. Muncheryan in his U.S. Pat. No. 2,986,969, dated Jun. 6, 1961. Muncheryan described a binocular device having a pair of relatively rotatable polarizers in each eyepiece. Depth of simulation was achieved by rotating the plane of polarization of one polarizing lens with respect to the other in one eyepiece until objects viewed have obtained apparent curvatures and depths. This effect is said to be more prominent in the angular range of 30 to 50 degrees between the polarization axes of the two polarizing elements. After the polarizers in one eyepiece are adjusted, the polarizing lens of the other eyepiece is rotated until the transmitted light intensity through that eyepiece is comfortable to the eye.
F. Pole, in U.S. Pat. No. 2,884,833, dated May 5, 1959, described a three-dimensional effect produced by means of a transparent, curved lenticular screen, having an array of individual lenses, which are preferable so small that they cannot be discerned by the normal eye when viewed from the normal viewing distance.
In French Pat. No. 1,101, 550, granted Apr. 20, 1955, Gilbert-Jacques Robin describes the creation of stereoscopic effects by using a transparent plate having alternately interpositioned convergent and divergent cylindrical lenses. The plate has a large number of lenses, typically one lens for each millimeter of plate width. The number of lenses is related to the locations of the image plane, the plate and the observer so that, for any given very small area on the image plane, one eye will see it reduced, and the other eye will see it enlarged.
Another prior art John R. Davis and Marlin O. Thurston U.S. Pat. No. 4,799,763 disclosed a stereoscopic projection system for viewing from an eye station a stereoscopic image composed of a 1×magnification of an image source pair. Said system comprises of a concave spherical mirror segment, two monitors, silvered prism, plano mirror and a beam splitter. To manufacture this number of optical pieces and to add in the cost of two monitors does not render this system economical at least not to the average consumer. Using two monitors in an average personal computer system would give need for an expensive upgrade of the system.
In all of the foregoing viewing systems of the prior art, a simulated three-dimensional effect is achieved at the expense of image quality. That is, each system of the prior art either partially obscures the image or produces a blurring of visual information. In the former case there is at least a loss of light from the picture, and the loss of light may be accompanied by a loss of picture information. In the latter case, blurring of visual information has a tendency to cause eyestrain, and to make viewing for extended periods of time somewhat unpleasant. Nevertheless, apparently obscuration and/or blurring have been considered essential heretofore in the production of three-dimensional effects from conventional two-dimensional images.
SUMMARY OBJECTS AND ADVANTAGES
The principal object of this invention is to provide a simple viewing system for depth simulation in which obscuration of picture information is avoided, and in which there is no blurring of visual information. It is also an object of the invention to produce depth simulation in the viewing of two-dimensional images without the need for special eyeglasses or binoculars. Still another object of the invention is to provide a viewing system for improving image detail clarity by means of magnification. It is still another object of this invention to improve the safety and health factors over some widely used viewing system. Still another object is to provide an ergonomical setup for a user friendly work or play station. Still another object is to provide an economical system that provides a 75% larger overall image.
In accordance with the invention, the foregoing objects are achieved by the use of a good quality optical concave mirror. This concave mirror produces an illusion of a 3D image captured in it. The image depth is enhanced by the filtering through of light, at the perimeter of the monitor, between the fibers of the material. The image is captured by the concave mirror and reflected to the eye of the observer. The 3D illusion is further enhanced by the tunnel effect created by the hutch partition and hutch shelf. Further the illusion is enhanced by the cutaway opening and the molding surrounding the opening which is real, and the reflected mirrors image, which is the illusion. This creates an illusion of depth, which the observer cannot distinguish between real objects and illusion.
Other advantages of the present invention include a 75% larger image area, greater than the monitor size used. For instance, a 17&P

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

3-dimensional visual system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 3-dimensional visual system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3-dimensional visual system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2871282

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.