3-D ultrasound recording device

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06605041

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an ultrasound imaging system having an ultrasound head for and processor for obtaining three-dimensional ultrasound images.
BACKGROUND OF THE INVENTION
A system for determining the position of a sensor within a given object and for the display of previously recorded images of the object corresponding to the sensor position has been described earlier by BUCHHOLZ in U.S. Pat. No. 5,383,454. With that system it is also possible to guide the tip of a sensor to a particular location within an object, while the position of the sensor can be observed on a monitor screen which also displays a previously recorded image of that particular region within the object. In that earlier concept, the position of the sensor is determined using a commercially available, three-dimensional sound digitizer.
Another example of a system for the acquisition of three-dimensional ultrasound image data is described by POLZ in the European patent EP 0 736 284 A2. That system incorporates an ultrasound scanning head. A sensor, which includes receiver coils to pick up magnetic fields emitted by a transmitter, produces sensor output data (both positional and rotational data) which precisely define the spatial position and orientation of the ultrasound scanning head. These are translational X, Y and Z axis data as well as rotational data around these axes.
A prerequisite for sufficiently precise positional and orientational determinations using magnetic field measurements is very detailed information on such extraneous parameters as:
interference fields generated for instance by display monitors, computers or electric motors;
interference patterns produced by highly permeable materials in the magnetic field, for instance metal objects moving within the measuring region; or
electromagnetic interference fields emanating from AC power supplies.
Quantifying these effects and/or minimizing them by appropriate hardware or procedures, be it shielding or continuous calibration, is a complex matter. The drawback of the earlier concept referred to thus lies in the fact that it is difficult to obtain positional and orientational determinations with the necessary degree of accuracy.
Another system for the acquisition of ultrasound images with the aid of a freely movable, manually guided ultrasound scanning head has been described by NOWACKI in U.S. Pat. No. 5,197,476. This earlier design is used for locating a target object within the human body. The system encompasses a table-mounted three-dimensional frame equipped with a number of infrared light-emitting diodes, a pair of infrared cameras for capturing the radiation emitted by the infrared LEDs, a computer and an ultrasound probe which itself is provided with infrared LEDs. Prior to applying the infrared probe the frame is mounted on the table and by means of the cameras the position of the infrared LEDs is measured and stored in the computer. The human body is then positioned within or directly next to the reference volume.
The freely manipulable, manually guided ultrasound probe is moved within the reference volume defined by the three-dimensional frame in a manner that the ultrasound probe remains within the measuring range of the cameras. The computer compares the position of the infrared light emitting diodes mounted on the ultrasound probe with the starting positions of the infrared LEDs on the three-dimensional frame, which permits both the very precise determination of the position of the ultrasound probe and the display of the position of the target object on a computer monitor screen. The drawback of this earlier invention lies in the fact that the ultrasound images can be acquired only within the reference volume predefined by means of the three-dimensional frame.
A method for the determination of the position and orientation of a platform in space has been disclosed by DI MATTEO in U.S. Pat. No. 4,396,945. The devices serving to unambiguously identify the three light sources mounted on the platform include three light modulators positioned between the light source and the fiber optic links. A code generator supplies each of the three light modulators with a unique code which produces an on-off modulation of each individual light source. In a modified version of this earlier method, unambiguous identification of each light source is obtained by providing each light source with a color reflector which reflects a specific color that differs from that of the other light sources. The drawback of this earlier invention lies in the fact that it is necessary to equip the three light sources, mounted on the moving object, with on-off modulation or, in the case of reflectors, with color coding provisions.
SUMMARY OF THE INVENTION
One embodiment of the present invention is related to a system for providing a means for acquiring three-dimensional ultrasonographic images using a freely movable, manually guided ultrasound scanning head, an ultrasound acquisition device and a positional-determination i.e. locating device, which locating device permits the determination of the position and orientation of the ultrasound scanning head and thus of the spatial position and orientation of the tomographic ultrasound images relative to a given base, preferably by linear measurements.
Another embodiment of the present invention relates to an ultrasound imaging system for creating a three-dimensional ultrasound image of a patient body. An ultrasound scanning head is configured to acquire a plurality of ultrasound images having a known orientation with respect to the ultrasound scanning head. An optical position determining device determines a position and orientation of the ultrasound scanning head. By optical it is meant that the position determining device uses electromagnetic waves, preferably light, to determine the position and orientation of objects, such as the ultrasound scanning head. An image processor relates the plurality of ultrasound images to one another to create the three-dimensional ultrasound image of the body.
In a preferred embodiment, the optical position determining device is further configured to determine a position and orientation of the patient body. In a more preferred embodiment, the system, such as via the image processor, is configured to determine the position and orientation of the ultrasound images with respect to the patient body. The system can be configured to determine the position and orientation of the three-dimensional ultrasound image with respect to the body.
The present invention makes it possible for the base that serves to identify the position of the ultrasound probe to be constituted of receivers, meaning, for example, the very cameras that serve to record the position of the ultrasound probe.
The system of the present invention is not affected by external parameters, is easy to handle; even if the positional determination were to be disrupted for instance by an object that strayed in between the acquisition device and the ultrasound scanning head, measurements can continue as soon as a clear view is restored, and the tracking accuracy is not negatively affected by extraneous electromagnetic fields produced by display monitors and/or electrical equipment.
Another embodiment of the present invention relates to an ultrasound imaging system for creating a three-dimensional image of a patient body. The system includes an ultrasound scanning head for acquiring a plurality of ultrasound images, a fixed control plane for determining position and orientation of the ultrasound scanning head relative to a spatial base by linear measurement, transmitters for emitting electromagnetic waves associated with either base points on the spatial base or control points on the control plane, receivers for receiving the electromagnetic waves located on the other of the base points or the control points, and an image processor for processing the ultrasound images to create the three-dimensional image of the body. The electromagnetic waves are used to determine the position and orientation of the ultra

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

3-D ultrasound recording device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 3-D ultrasound recording device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3-D ultrasound recording device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3082295

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.