Data processing: measuring – calibrating – or testing – Measurement system – Orientation or position
Reexamination Certificate
2002-04-26
2003-12-30
Bui, Bryan (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system
Orientation or position
C702S150000, C702S153000, C318S568110
Reexamination Certificate
active
06671651
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to manipulating virtual objects in a modeling environment. More particularly, the invention relates to the selection and manipulation of three-dimensional objects represented in a two-dimensional display space.
BACKGROUND OF THE INVENTION
Systems and methods for selecting and manipulating objects in computer-based modeling environments are known. Examples of existing systems that select and manipulate objects include circuit board design systems and systems used for designing mechanical objects, such as automobiles and airplanes. Some systems typically impose restrictions on a user, such as placing objects such as circuit elements on predefined planes. Other systems require a user to specify a location of a component with high precision in three dimensions and three angular orientations. The devices commonly used for providing information to the modeling system include alphanumeric input devices, such as keyboards, and cursor-based devices operating in two dimensions, such as computer mice and trackballs. Present computer-based modeling systems generally do not permit a user to readily modify an object that has been selected.
The stringent rules that present computer-based modeling systems impose and the inability of users to select, manipulate, and modify objects in a manner more akin to natural motion limits the ability of users to create models of three-dimensional objects.
SUMMARY OF THE INVENTION
The systems and methods of the invention provide a user the ability to select three-dimensional virtual objects in a three-dimensional modeling environment using two-dimensional representations of the objects. In broad overview, the invention involves a multidimensional degree of freedom haptic interface that controls a three-dimensional cursor. A user employs the cursor to select an arbitrary point on a three-dimensional virtual object on interest. The user can select the object by positioning the cursor so-as to coincide with a point of the object in two of three dimensions, and issuing a select command. Through the application of a mathematical transformation, the system determines the difference between the position of a selected point on the object and the position of the cursor. The system displays the cursor at the location of the selected point on the object, so that the user can more easily manipulate or edit the object in the modeling environment. When the user releases the object after manipulation is completed, the cursor is relocated to the position it would have had the manipulations been applied to the cursor directly.
In one embodiment, the invention features a method for selecting an object in a three-dimensional modeling environment. The method includes the steps of generating a three-dimensional modeling environment containing one or more virtual objects and a three-dimensional cursor, determining a first three-dimensional cursor position in the three dimensional modeling environment, the three-dimensional cursor position corresponding to a position of an input device having at least three degrees of freedom, representing a first view of at least one of the one or more virtual objects in a first two-dimensional display space, representing the three-dimensional cursor position in the two-dimensional display space, and selecting one of the virtual objects based on a positional correspondence of the object and the cursor in the two-dimensional display space.
In some embodiments, the input device has at least six degrees of freedom. In one embodiment, the input device has exactly six degrees of freedom. In some embodiments, the virtual object is a selected one of a point, a straight line segment, a curvilinear segment, a spline, a two-dimensional representation, and a three dimensional representation.
In some embodiments, the method further includes the step of editing the selected virtual object. In some embodiments, editing the selected virtual object is a selected one of coloring the object, modifying the object, combining the object with another virtual object, grouping the object with another object, deleting the object, and renaming the object. In some embodiments, editing the selected virtual object includes sculpting the selected virtual object.
In some embodiments, the method further includes the step of performing a file function involving the selected virtual object. In some embodiments, performing a file function includes saving the object to a file.
In some embodiments, representing a first view of at least one of the one or more virtual objects includes representing the one or more virtual objects in a selected one of a perspective view and an orthogonal view.
In some embodiments, the method further includes the steps of selecting a local origin point on the selected virtual object and defining a mathematical transformation in the three-dimensional modeling environment, the mathematical transformation representative of the difference in location of the local origin point and the three-dimensional cursor position.
In some embodiments, the local origin point is an arbitrary point on the object. In some embodiments, defining the mathematical transformation includes defining a vector having a component directed orthogonal to the two-dimensional display space. In some other embodiments, defining the mathematical transformation includes defining a mathematical transformation having at least one of a three-dimensional translational vector, a rotation about the local origin point, and a rotation about the three-dimensional cursor position.
In some embodiments, the method further includes the steps of applying the transformation and manipulating the virtual object, the manipulation of the virtual object corresponding to a manipulation of the input device by the user.
In some embodiments, the method further includes the step of manipulating the virtual object, the manipulation of the virtual object corresponding to a manipulation of the input device by the user combined with an application of the transformation. In some embodiments, the manipulation of the input device includes at least one of a translational degree of freedom and a rotational degree of freedom. In some embodiments, the manipulation of the input device includes a simultaneous manipulation of two or more independent degrees of freedom. In some embodiments, the manipulation of the input device includes a simultaneous manipulation of three or more independent degrees of freedom. In some embodiments, the manipulation of the input device includes a simultaneous manipulation of six or more independent degrees of freedom.
In some embodiments, the method further includes the step of relocating the three-dimensional cursor to the location of the local origin point by application of the mathematical transformation. In some embodiments, the relocating step is performed only during the duration of the manipulation.
In some embodiments, the method further includes the step of providing a visual aid to help the user select and manipulate the virtual object. In some embodiments, providing the visual aid includes providing a user-activated constraint limiting a point to a locus aligned to an axis of the three-dimensional modeling environment.
In some embodiments, the method further includes the step of moving the three dimensional cursor to a position it would have if the manipulation of the input device by the user had been applied directly to the three dimensional cursor. In some embodiments, the moving step is performed upon a command issued by the user. In some embodiments, the command is a release of the selected virtual object.
In some embodiments, the method further includes the step of providing a visual aid to help the user select and manipulate the virtual object. In some embodiments, providing the visual aid includes providing a user-activated constraint limiting a point to a locus aligned to an axis of the three-dimensional modeling environment. In some embodiments, providing the visual aid includes providing a context-specific visual aid con
Goodwin William Alexander
Handley Joshua Eric
Winston Philip Brown
Bui Bryan
SensAble Technologies, Inc.
Testa Hurwitz & Thibeault LLP
LandOfFree
3-D selection and manipulation with a multiple dimension... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 3-D selection and manipulation with a multiple dimension..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3-D selection and manipulation with a multiple dimension... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3156034