Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Ester doai
Reexamination Certificate
1996-01-30
2001-10-09
Gerstl, Robert (Department: 1626)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Ester doai
C558S407000
Reexamination Certificate
active
06300372
ABSTRACT:
FIELD OF INVENTION
The present invention relates to certain novel 3-cyano-3-(3,4-disubstituted)phenylcyclohexyl-1-carboxylates and their corresponding cyclohexenyl analogs, pharmaceutical compositions containing these compounds, and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).
BACKGROUND OF THE INVENTION
Bronchial asthma is a complex, multifactorial disease characterized by reversible narrowing of the airway and hyperreactivity of the respiratory tract to external stimuli.
Identification of novel therapeutic agents for asthma is made difficult by the fact that multiple mediators are responsible for the development of the disease. Thus, it seems unlikely that eliminating the effects of a single mediator will have a substantial effect on all three components of chronic asthma. An alternative to the “mediator approach” is to regulate the activity of the cells responsible for the pathophysiology of the disease.
One such way is by elevating levels of cAMP (adenosine cyclic 3′,5′-monophosphate). Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; [Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, 17-29, 1973]. When the appropriate agonist binds to specific cell surface receptors, adenylate cyclase is activated, which converts Mg
+2
-ATP to cAMP at an accelerated rate.
Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma. As such, an elevation of cAMP would produce beneficial effects including: 1) airway smooth muscle relaxation, 2) inhibition of mast cell mediator release, 3) suppression of neutrophil degranulation, 4) inhibition of basophil degranulation, and 5) inhibition of monocyte and macrophage activation. Hence, compounds that activate adenylate cyclase or inhibit phosphodiesterase should be effective in suppressing the inappropriate activation of airway smooth muscle and a wide variety of inflammatory cells. The principal cellular mechanism for the inactivation of cAMP is hydrolysis of the 3′-phosphodiester bond by one or more of a family of isozymes referred to as cyclic nucleotide phosphodiesterases (PDEs).
It has now been shown that a distinct cyclic nucleotide phosphodiesterase (PDE) isozyme, PDE IV, is responsible for cAMP breakdown in airway smooth muscle and inflammatory cells. [Torphy, “Phosphodiesterase Isozymes: Potential Targets for Novel Anti-asthmatic Agents” in New Drugs for Asthma, Barnes, ed. IBC Technical Services Ltd., 1989]. Research indicates that inhibition of this enzyme not only produces airway smooth muscle relaxation, but also suppresses degranulation of mast cells, basophils and neutrophils along with inhibiting the activation of monocytes and neutrophils. Moreover, the beneficial effects of PDE IV inhibitors are markedly potentiated when adenylate cyclase activity of target cells is elevated by appropriate hormones or autocoids, as would be the case in vivo. Thus PDE IV inhibitors would be effective in the asthmatic lung, where levels of prostaglandin E
2
and prostacyclin (activators of adenylate cyclase) are elevated. Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currently on the market.
The compounds of this invention also inhibit the production of Tumor Necrosis Factor (TNF), a serum glycoprotein. Excessive or unregulated TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions; sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption diseases, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia secondary to human acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or pyresis, in addition to a number of autoimmune diseases, such as multiple sclerosis, autoimmune diabetes and systemic lupus erythematosis.
AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least tree types or strains of HIV have been identified, i.e., HIV-1, HIV-2 and HIV-3. As a consequence of HIV infection, T-cell-mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Viruses such as HIV-1 or HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication.
Cytokines, specifically TNF, are implicated in activated T-cell-mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by inhibition of cytokine production, notably TNF, in an HIV-infected individual aids in limiting the maintenance of T cell activation, thereby reducing the progression of HIV infectivity to previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HIV infection. Monocytes, macrophages, and related cells, such as kupffer and glial cells, have also been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. [See Rosenberg et al., The Immunopathogenesis of HIV Infection, Advances in Immunology, Vol. 57, 1989]. Monokines, such as TNF, have been shown to activate HIV replication in monocytes and/or macrophages [See Poli et al., Proc. Natl. Acad. Sci., 87:782-784, 1990], therefore, inhibition of monokine production or activity aids in limiting HIV progression as stated above for T cells.
TNF has also been implicated in various roles with other viral infections, such as the cytomegalovirus (CMV), influenza virus, adenovirus, and the herpes virus for similar reasons as those noted.
TNF is also associated with yeast and fungal infections. Specifically
Candida albicans
has been shown to induce TNF production in vitro in human monocytes and natural killer cells [See Riipi et al., Infection and Immunity, 58(9):2750-54, 1990; and Jafari et al., Journal of Infectious Diseases, 164:389-95, 1991. See also Wasan et al., Antimicrobial Agents and Chemotherapy, 35,(10):2046-48, 1991; and Luke et al., Journal of Infectious Diseases, 162:211-214,1990].
The ability to control the adverse effects of TNF is furthered by the use of the compounds which inhibit TNF in mammals who are in need of such use. There remains a need for compounds which are useful in treating TNF-mediated disease states which are exacerbated or caused by the excessive and/or unregulated production of TNF.
SUMMARY OF THE INVENTION
This invention relates to the novel compounds of Formula (I), as shown below, useful in the mediation or inhibition of the enzymatic activity (or catalytic activity) of phosphodiesterase IV (PDE IV). The novel compounds of Formula (I) also have Tumor Necrosis Factor (TNF) inhibitory activity.
This invention also relates to the pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent.
The invention also relates to a method of
Christensen, IV Siegfried B.
Forster Cornelia Jutta
Gerstl Robert
Kanagy James M.
Kinzig Charles M.
SmithKline Beecham Corporation
LandOfFree
3-Cyano-3-(3,4-disubstituted) phenylcyclohexyl-1-carboxylates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 3-Cyano-3-(3,4-disubstituted) phenylcyclohexyl-1-carboxylates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3-Cyano-3-(3,4-disubstituted) phenylcyclohexyl-1-carboxylates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2567323