3 component cathode collector bar

Electrolysis: processes – compositions used therein – and methods – Electrolytic synthesis – Utilizing fused bath

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S243100, C204S280000

Reexamination Certificate

active

06294067

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to cathode assemblies for use in Hall-Heroult aluminum reduction cells. Such cathode assemblies include a cathode block into which is fitted a collector bar. More particularly, the invention relates to cathode assemblies having multiple collector bars.
2. Description of the Related Art
Aluminum is commonly manufactured via a smelting process in an electrolytic cell of the established Hall-Heroult design. A conventional Hall-Heroult electrolytic cell, known as a pot and shown in
FIG. 1
, includes a cell C defining a chamber H in which are received carbonaceous anodes A. The anodes A are suspended in a bath B of electrolytic fluid containing alumina and other materials. Electric current is supplied to the anodes A via anode rod assemblies R to provide a source of electrons for reducing the alumina to aluminum which accumulates as a molten aluminum pad P. The molten aluminum pad P forms a liquid metal cathode. A cathode assembly CA, shown in detail in
FIG. 2
from the underside thereof, is positioned in the bottom of the chamber H and completes the cathodic portion of the cell C. The cathode assembly CA includes a carbonaceous cathode block CB having an upper surface which supports the molten aluminum pad P and a lower surface which defines a groove or slot S extending between the ends of the cathode block CB. A collector bar BA, typically formed from hot rolled or cast mild steel, is received within the slot S and is secured in the slot S with a layer of a conductive material CM such as cast iron, carbonaceous glue, rammed carbonaceous paste or the like. The conductive material layer CM is disposed between the collector bar BA and the cathode block CB along the entire length of the slot S. The collector bar BA is longer than the cathode block CB and extends out of the chamber H. The exposed end of the collector bar BA is connected via a bus bar (not shown) to the current supply in a conventional manner to complete the circuit. The cathode assembly CA may include a pair of opposing collector bars BA as shown in
FIG. 2
which are separated by a filler material F which fills the gap between the collector bars BA. The filler material F may be a crushable material or a piece of carbon or a carbonaceous paste, commonly referred to as seam mix or ramming paste (an unfired mixture of anthracite or graphite and anthracite and pitch binder), or a combination thereof
These electrolytic cells are typically operated at high temperatures (about 940 to 980° C.) which, when combined with the corrosive nature of the electrolytes, creates a harsh environment. Collector bars conventionally are formed from hot rolled or cast mild steel. Mild steel has relatively poor conductivity compared to aluminum, but has a high melting point and relatively low cost. The cathode blocks have historically been formed from a mixture of anthracite and pitch binder and exhibit relatively high electrical resistivity, high sodium swelling, low thermal shock resistance and high abrasion resistance. As aluminum producers have sought to increase productivity, the operating amperages for such cells have been increased; hence the need for reduced power losses in the smelting process has increased. In an effort to reduce the electrical resistivity, graphite has been substituted for some of the anthracite in the cathode blocks, however with concomitant loss in abrasion resistance, increased erosion rates and higher cost of materials. Moreover, cathode blocks with high graphite content and cathode blocks that have undergone a graphitizing process are subject to uneven cathode current distribution along the length of the cathode block and high localized erosion rates.
An electrical current passing through an object naturally follows the path of least resistance. In the case of a Hall-Heroult cell, this is believed to be through the outer one-third of the cathode block CB. The lines D in
FIG. 1
depict the uneven distribution of current passing through the cathode block CB and the high concentration of current passing through the outer one-third of the cathode block CB. This high concentration of current in the cathode block CB results in increased localized erosion rates in that portion of the cathode block CB.
Accordingly, a need remains for a device for and a method of improving the current distribution in cathode blocks of a Hall-Heroult electrolytic cell which permits high graphite content and graphitized cathode blocks to be operated at high amperage with an improved pot life expectation.
SUMMARY OF THE INVENTION
This need is met by the cathode assembly of the present invention which is designed for use in a Hall-Heroult electrolytic cell for the production of aluminum. The cell includes a shell defining a chamber, an anode received in the chamber and a current bus positioned outside the shell and connected to the cathode assembly.
The cathode assembly of the present invention includes a cathode block positioned in the chamber below the anode, the cathode block defining at least two first slots and at least one second slot. The first and second slots extend from an external end of the cathode block to an interior portion of the cathode block. A primary collector bar is received in each of the first slots and has a primary interface for electrical connection to the cathode block. A secondary collector bar is received in the second slot and has a secondary interface for electrical connection to the cathode block. A combination of the primary interfaces is sized to be larger (have a greater surface area) than the secondary interface. Preferably, each of the primary interfaces are larger than the secondary interface. More preferably, the cross-sectional area of the primary collector bars is greater than the cross-sectional area of the secondary collector bar and each of the primary collector bars has a width greater than its height. The primary interface includes a connected portion of an exterior surface of the primary collector bar which is electrically connected to the cathode block whereas an unconnected portion of the primary collector bar exterior surface is electrically disconnected from the cathode block. The secondary interface includes an exterior surface of the secondary collector bar which extends substantially the full length of the portion of the secondary collector bar received in the second slot. In this manner, current may pass from the cathode block to the entire secondary collector bar but current can only pass from the cathode block to the primary collector bar at the interior of the cathode block.
This arrangement is preferably accomplished by including a layer of an electrically conductive material along the exterior surface of the primary collector bar adjacent the interior portion of the cathode block and along substantially the entire exterior surface of the secondary collector bar which is received in the second slot. The electrically conductive material may be cast iron, carbonaceous glue or rammed carbonaceous paste or the like. Preferably, the connected portion of the primary collector bar exterior surface extends between an interior of the cathode block and a position spaced from the external end of the cathode block. More preferably, the connected portion extends along about two-thirds of the length of the first slot.
The cathode assembly of the present invention is particularly useful for producing aluminum in a cell having a chamber containing an electrolytic bath and an anode suspended in the bath, where the current distribution through the cathode assembly is uniform. A method of producing aluminum according to the present invention includes steps of:
(a) providing a cathode assembly in the chamber below the anode, the cathode assembly having (1) a cathode block defining at least two first slots and at least one second slot, the first and second slots extending from an external end of the cathode block to an interior portion of the cathode block, (2) at least two primary collector bars, each primary coll

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

3 component cathode collector bar does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 3 component cathode collector bar, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 3 component cathode collector bar will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2450452

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.