2 rail to 3 rail conversion apparatus for use in model trains

Electricity: transmission to vehicles – Collectors – Convertible

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06662917

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an apparatus that allows for model trains to be operated on either a track layout having 2 rails or a track layout having 3 rails, and more particularly, to an apparatus that readily allows the operator to configure the model train to operate in either a 2 rail configuration or a 3 rail configuration.
BACKGROUND OF THE INVENTION
The use of both 2 rail track layouts and 3 rail track layouts are well known in the model train industry. For example, when “O Gauge” model railroading systems were first introduced in approximately the 1940's, the systems employed a 3 rail track layout. In such 3 rail systems, the third rail, which is disposed in the center of the track between the two outside rails, functions to supply power to the locomotive. The locomotive is provided with a pickup roller, which extends downward from beneath the bottom of the locomotive and engages the third rail. The pickup roller functions to couple the power signal on the third rail to the motor of the locomotive. The two outside rails function as the ground source (or return path) for the motor of the locomotive, and are coupled to the motor of the locomotive via the left and right wheel assemblies of the locomotive. In such systems, the left and right wheel assemblies are electrically coupled together. Typically, the power signal provided on the third rail by a power supply is an AC signal in a range of 5 to 22 volts. The motor utilized by the locomotive can be either an AC or DC motor, with the latter requiring rectification of the power signal.
One long standing compliant about such 3 rail systems was that the “look” of the track was not realistic due to the inclusion of the middle rail (i.e., third rail). In response to these complaints, “HO-Gauge” systems, which utilized a 2 rail track, were introduced during the 1950's. The 2 rail system solved the problem of the “unrealistic” appearance of the
3
rail track systems. HO-Gauge systems utilized locomotives having only DC motors, which were powered by a DC power supply coupled to the tracks. The power supply was coupled to the motor of the locomotive via the wheels of the locomotive, with one track coupled to the positive terminal of the DC power supply, and the other track coupled to the negative terminal of the DC power supply. Of course, this power supply configuration mandated that the wheel structure on one side of the locomotive be electrically isolated from the wheel structure on the opposite side of the locomotive.
Shortly after the introduction of the 2 rail HO-Gauge systems, 2 rail O-Gauge systems were introduced. However, such 2 rail O-Gauge systems have never been widely accepted in the industry due to various problems associated with their use. For example, the use of AC power over the track rails, as opposed to DC power, greatly simplifies and enhances the operation of model train systems. More specifically, when utilizing AC power, the polarity of the current supplied to the track rails is not an issue. However, the polarity of the power signal applied to the tracks is an issue when utilizing DC power, because if the power supply leads coupled to the track rails are reversed, the locomotive will go in the opposite direction. Thus, powering the system utilizing an AC power supply makes wiring the system a far simpler task in comparison to powering the system utilizing a DC power supply. In addition, by employing an AC power signal on the rails, it is possible to utilize small amounts of DC power, which are sent over the rails, as a signaling method for the activation of various features of the system (e.g., blowing the locomotive's whistle, ringing bells, etc.). As a consequence of the foregoing problems with 2 rail O-Gauge systems, 3 rail O-Gauge systems still exist and are being utilized today.
As a result of the continuing existence of both 2 rail and 3 rail systems, model train enthusiasts often undertake the task of converting locomotives initially designed for use with 3 rail systems to ones that are capable of operating on 2 rail systems (and vice versa). However, such a conversion is extremely time consuming and requires both special tools and considerable mechanical skill. For example, when converting a model train designed to operate on a 3 rail system to one that operates on a 2 rail system, the conversion process requires the removal of the third rail pickup from the locomotive, as well as the modification of the wheel and axle design of the locomotive. While the removal of the third rail pickup is a fairly simple process, the modification of the wheel and axle design is not. This part of the conversion process requires that the locomotive be modified such that a first set of wheels located along the same side of the locomotive be insulated from a second set of wheels located on the opposite side of the locomotive. In addition, one of the sets of wheels must also be insulated from the chassis of the locomotive. Further, a set of wipers (i.e., contacts) must be installed so as to brush against the set of wheels insulated from the chassis (the wipers must also be insulated from the chassis). The wipers are connected to a wire harness and function to couple the power signal transmitted over one rail and through the insulated set of wheels to the motor or electronics inside the locomotive. A second wire harness is also required to couple the ground signal from the other rail through the non-insulated set of wheels to motor or electronics inside the locomotive.
As is evident from the foregoing description, converting a model train design to operate on a 3 rail configuration to one that operates on a 2 rail configuration is an extremely complex and time consuming process. Converting the model train in the opposite direction (i.e., 2 rail to 3 rail) is equally complex. Moreover, the process is not one that can be performed unless the operator has substantial knowledge about the design and construction of model trains, and a sophisticated set of tools. Clearly, the average train hobbyist does not have such knowledge, or the necessary tools to perform this process.
Accordingly, there exists a need for a model train conversion system that allows an operator to easily convert the model train from a 2 rail configuration to a 3 rail configuration (and vice versa), and that does not require the operator to have any knowledge regarding model train design, or require the operator to disassembly the locomotive in order to perform the conversion.
SUMMARY OF THE INVENTION
The present invention relates to a conversion system, which is incorporated, for example in the locomotive of the model train set, that allows the operator to easily and quickly configure the model train for either 2 rail operation or 3 rail operation.
More specifically, the present invention relates to a model train capable of operating on either a two rail system or a three rail system. The model train includes: an electrical device having a first power terminal and a second power terminal; a first wheel assembly for engaging a first rail; a second wheel assembly for engaging a second rail; a pickup member for engaging a third rail; and a switch member coupled between the motor, the first wheel assembly, the second wheel assembly and the pickup member, the switch operable in a first state and a second state, wherein in the first state the switch couples the pickup member to the first power terminal, and couples the first wheel assembly and the second wheel assembly to the second power terminal, and in the second state the switch couples the first wheel assembly to the first power terminal and couples the second wheel assembly to the second power terminal.
As described below, the 2 rail to 3 rail conversion system provides important advantages over prior art conversion techniques. For example, in accordance with the present invention, the operator can essentially configure the locomotive for either 2 rail or 3 rail operation simply by flipping a switch. As such, the present invention eliminates the need for per

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

2 rail to 3 rail conversion apparatus for use in model trains does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 2 rail to 3 rail conversion apparatus for use in model trains, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 2 rail to 3 rail conversion apparatus for use in model trains will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3132795

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.