Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...
Reexamination Certificate
2001-04-13
2003-04-08
Carr, Deborah D. (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Fatty compounds having an acid moiety which contains the...
C514S558000, C514S560000, C514S561000, C562S439000
Reexamination Certificate
active
06545170
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to novel compounds and their use in therapy, in particular their use as nitric oxide synthase inhibitors.
2. Related Art
It has been known since the early 1980's that the vascular relaxation caused by acetylcholine is dependent on the presence of the vascular endothelium and this activity was ascribed to a labile humoral factor termed endothelium-derived relaxing factor (EDRF). The activity of nitric oxide (NO) as a vasodilator has been known for well over 100 years. In addition, NO is the active component of amylnitrite, glyceryltrinitrate and other nitrovasodilators. The identification of EDRF as NO has coincided with the discovery of a biochemical pathway by which NO is synthesized from the amino acid L-arginine by the enzyme NO synthase.
Nitric oxide is the endogenous stimulator of the soluble guanylate cyclase. In addition to endothelium-dependent relaxation, NO is involved in a number of biological actions including cytotoxicity of phagocytic cells and cell-to-cell communication in the central nervous system.
There are at least three types of NO synthase as follows:
(i) a constitutive, Ca++/calmodulin dependent enzyme, located in the endothelium, that releases NO in response to receptor or physical stimulation.
(ii) a constitutive, Ca++/calmodulin dependent enzyme, located primarily in the brain, that releases NO in response to receptor or physical stimulation.
(iii) a Ca++ independent enzyme which is induced after activation of vascular smooth muscle,macrophages, endothelial cells, and a number of other cells by endotoxin and cytokines. Once expressed this inducible NO synthase generates NO continuously for long periods.
The NO released by the two constitutive enzymes acts as a transduction mechanism underlying several physiological responses. The NO produced by the inducible enzyme is a cytotoxic molecule for tumor cells and invading microorganisms. It also appears that the adverse effects of excess NO production, in particular pathological vasodilation and tissue damage, may 10 result largely from the effects of NO synthesized by the inducible NO synthase.
There is a growing body of evidence that NO may be involved in the degeneration of cartilage which takes place in certain conditions such as arthritis and it is also known that NO synthesis is increased in rheumatoid arthritis and in osteoarthritis. Accordingly, conditions in which there is an advantage in inhibiting NO production from L-arginine include arthritic conditions such as rheumatoid arthritis, osteoarthritis, gouty arthritis, juvenile arthritis, septic arthritis, spondyloarthritis, acute rheumatic arthritis, enteropathic arthritis, neuropathic arthritis, and pyogenic arthritis.
Other conditions which NO inhibition may be useful include chronic or inflammatory bowel disease, cardivascular ischemia, diabetes, congestive heart failure, myocarditis, atherosclerosis, migraine, glaucoma, aortic aneurysm, reflux esophagitis, diarrhea, irritable bowel syndrome, cystic fibrosis, emphysema, asthma, bronchiectasis, hyperalgesia (allodynia), cerebral ischemia (both focal ischemia, thrombotic stroke and global ischemia (secondary to cardiac arrest), multiple sclerosis and other central nervous system disorders mediated by NO, for example Parkinson's disease and Alzheimer's disease. Further neurodegenerative disorders in which NO inhibition may be useful include nerve degeneration and/or nerve necrosis in disorders such as hypoxia, hypoglycemia, epilepsy, and in external wounds (such as spinal cord and head injury), hyperbaric oxygen convulsions and toxicity, dementia e.g. pre-senile dementia, and AIDS-related dementia, Sydenham's chorea, Huntington's disease, Amyotrophic Lateral Sclerosis, Korsakoff's disease, imbecility relating to a cerebral vessel disorder, sleeping disorders, schizophrenia, depression, depression or other symptoms associated with Premenstrual Syndrome (PMS), anxiety and septic shock.
Nitric oxide inhibition may also play a role in the treatment of pain including somatogenic (either nociceptive or neuropathic), both acute and chronic. A nitric oxide inhibitor could be used in any situation that a common NSAID or opioid analgesic would traditionally be administered.
Still, other disorders which may be treated by inhibiting NO production include opiate tolerance in patients needing protracted opiate analgesics, and benzodiazepine tolerance in patients taking benzodiazepines, and other addictive behavior, for example, nicotine and eating disorders. NO inhibiting agents may also be useful as antibacterial agents.
Further conditions in which there is an advantage in inhibiting NO production from L-arginine include systemic hypotension associated with septic and/or toxic shock induced by a wide variety of agents; therapy with cytokines such as TNF, IL-1 and IL-2; and as an adjuvant to short term immunosuppression in transplant therapy.
Other conditions in which there is an advantage in inhibiting NO production include ocular conditions such as ocular hypertension retinitis uveitis, systemic lupus erythematosis (SLE), flomerulonephritis, restenosis, inflammatory sequelae of viral infections, acute respiratory distress syndrome (ARDS), oxidant-induced lung injury, IL2 therapy such as in a cancer patient, cachexia, immunosuppression such as in transplant therapy, disorders of gastrointestinal motility, sunburn, eczema, psoriasis, and bronchitis.
Some of the NO synthase inhibitors proposed for therapeutic use are non-selective; they inhibit both the constitutive and the inducible NO synthases. Use of such a non-selective NO synthase inhibitor requires that great care be taken in order to avoid the potentially serious consequences of over-inhibition of the constitutive NO-synthase including hypertension and possible thrombosis and tissue damage. In particular, in the case of the therapeutic use of L-NMMA for the treatment of toxic shock it has been recommended that the patient must be subject to continuous blood pressure monitoring throughout the treatment. Thus, while non-selective NO synthase inhibitors have therapeutic utility provided that appropriate precautions are taken, NO synthase inhibitors which are selective in the sense that they inhibit the inducible NO synthase to a considerably greater extent than the constitutive isoforms of NO synthase would be of even greater therapeutic benefit and easier to use (S. Moncada and E. Higgs, FASEB J., 9, 1319-1330, 1995).
The following individual publications disclose compounds said to be useful in nitric oxide synthase inhibition:
International Publication No. WO 96/35677
International Publication No. WO 96/33175
International Publication No. WO 96/15120
International Publication No. WO 95/11014
International Publication No. WO 95/11231
International Publication No. WO 95/25717
International Publication No. WO 95/24382
International Publication No. WO 94/12165
International Publication No. WO 94/14780
International Publication No. WO 93/13055
European Patent Application No. EP0446699A1
U.S. Pat. No. 5,132,453
U.S. Pat. No. 5,684,008
U.S. Pat. No. 5,830,917
U.S. Pat. No. 5,854,251
U.S. Pat. No. 5,863,931
U.S. Pat. No. 5,919,787
U.S. Pat. No. 5,945,408
U.S. Pat. No. 5,981,511
The disclosures of which are hereby incorporated by reference in their entirety as if written herein.
In particular, WO 93/13055 discloses compounds of the formula
and salts, and pharmaceutically acceptable esters and amides thereof, in which:
R
1
is a C
1-6
straight or branched chain alkyl group, a C
2-6
alkenyl group, a C
3
-C
6
cycloalkyl group or a C
3-6
cycloalkylC
1-6
alkyl group;
Q is an alkylene, alkenylene or alkynylene group having 3 to 6 carbon atoms and which may optionally be substituted by one or more C
1-3
alkyl groups; a group of formula—(CH
2
)
p
X(CH
2
)
q
— where p is 2 or 3, q is 1 or 2 and X is S(O)
x
where x is 0, 1 or 2, O or NR
2
where R
2
is H or C
1-6
alkyl; or a group of formula —(CH
2
)
r
A(CH
2
)
s
— where r i
Hansen, Jr. Donald W.
Pitzele Barnett S.
Scholten Jeffrey A.
Sikorski James A.
Snyder Jeffrey S.
Carr Deborah D.
Pharmacia Corporation
Polster, II Philip B.
LandOfFree
2-amino-5, 6 heptenoic acid derivatives useful as nitric... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 2-amino-5, 6 heptenoic acid derivatives useful as nitric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 2-amino-5, 6 heptenoic acid derivatives useful as nitric... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048885