2, 7-aryl-9-substituted fluorenes and 9-substituted fluorene oli

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From halogenated hydrocarbon reactant

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

528401, 521 82, 478421, 478690, 478917, 4274071, 313483, C08G 6100

Patent

active

059626313

ABSTRACT:
The invention relates to 2,7-substituted-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers. The fluorenes, oligomers and polymers are substituted at the 9-position with two hydrocarbyl moieties which may optionally contain one or more of sulfur, nitrogen, oxygen, phosphorous or silicon heteroatoms; a C.sub.5-20 ring structure formed with the 9-carbon on the fluorene ring or a C.sub.4-20 ring structure formed with the 9-carbon containing one or more heteroatoms of sulfur, nitrogen or oxygen; or a hydrocarbylidene moiety. In one embodiment, the fluorenes are substituted at the 2- and 7-positions with aryl moieties which may further be substituted with moieties which are capable of crosslinking or chain extension or a trialkylsiloxy moiety. The fluorene polymers and oligomers may be substituted at the 2- and 7'-positions. The monomer units of the fluorene oligomers and polymers are bound to one another at the 2- and 7'-positions. The 2,7'-aryl-9-substituted fluorene oligomers and polymers may be further reacted with one another to form higher molecular weight polymers by causing the optional moieties on the terminal 2,7'-aryl moieties, which are capable of crosslinking or chain extension, to undergo chain extension or crosslinking. Also disclosed are processes for preparing the disclosed compounds.

REFERENCES:
patent: 3641115 (1972-02-01), Peck et al.
patent: 4769292 (1988-09-01), Tang et al.
patent: 5621131 (1997-04-01), Kreuder et al.
Chemical Abstract 126:322721 (1997).
Chemical Abstracts, 59, 15231 (1963).
Chemical Abstracts, 67, 64085x (1967).
Derwent 94-307586/38 (JP06234668-A), p. 119, Week 9438.
Adachi, Chihaya, "Blue Light-Emitting Organic Electroluminescent Devices", Appl. Phys. Lett., vol. 56, No. 9, pp. 799-801 (1990).
Braun, D., et al., "Visible Light Emission From Semiconducting Polymer Diodes", Appl. Phys. Lett., vol. 58, No. 18, pp. 1982-1984 (1991).
Brown, Charles Eric, "Polynuclear and Halogenated Structures in Polyphenylenes Synthesized form Benzene, Biphenyl, and p-Terphenyl Under Various Conditions: Characterization by Laser Desorption/Fourier Transform Mass Spectrometry", Journal of Polymer Science: Polymer Chemistry Edition, vol. 24, pp. 255-267 (1986).
Burroughes, J. H., et al., "Light-Emitting Diodes Based on Conjugated Polymers", Nature, vol. 347, p. 539-541 (1990).
Burrows, P. E., et al., "Metal Ion Dependent Luminescence Effects in Metal Tris-Quinolate Organic Heterojunction Light Emitting Devices", Appl. Phys. Lett., vol. 64, No. 20, pp. 2718-2720 (1994).
Colon, Ismael, et al., "Coupling of Aryl Chlorides by Nickel and Reducing Metals", J. Org. Chem., vol. 51, No. 14, pp. 2627-2637 (1986).
Colon, I., et al., "High Molecular Weight Aromatic Polymers by Nickel Coupling of Aryl Polychlorides", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 28, pp. 367-383 (1990).
Fuji, A., et al., "Color-Variable Electroluminescent Diode with Single Quantum Well Structure Utilizing 8-Hydroxyquinaline Aluminum and Aromatic Diamine", Jpn. J. Appl. Phys., vol. 34, pp. 499-502 (1995).
Fukuda, Masahiko, et al., "fusible Conducting Poly(9-alkylfluorene) and Poly(9,9-dialkylfluorene) and Their Characteristics", Jpn. J. Appl. Phys., vol. 28, No. 8, pp. 1433-1435 (1989).
Fukuda, Masahiko, et al., "Synthesis of Fusible and Soluble Conducting Polyfluorene Derivatives and Their Characteristics", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 31, pp. 2465-2471 (1993).
Ghera, E., et al., "Reactions of Active Methylene Compounds in Pyridine Solution. II. Aldol-type Reactions of Indene and Fluorene", J. Amer. Chem. Soc., vol. 82, pp. 4945-4952 (1960).
Grem, G., et al., "Realization of a Blue-Light-Emitting Device using Poly(p-phenylene)", Adv. Materials, vol. 4, pp. 36-37 (1992).
Hamada, Yuji, et al., "High Luminance in Organic Electroluminescent Devices Chemistry Letters, pp. 905-906 (1993).
Hamada, Yuji, et al., "Organic Electroluminescent Devices with Bright Blue Emission", Optoelectronics--Devices and Technologies, vol. 7, No. 1, pp. 83-93 (1992).
Iyoda, Masahiko, et al., "Homocoupling of Aryl Halides Using Nickel(II) Complex and Zinc in the Presence of Et.sub.4 NI. An Efficient Method for the Synthesis of Biaryls and Bipyridines", Bull. Chem. Soc. Jpn., vol. 63, pp. 80-87 (1990).
Kido, Junji, et al., "Blue Electroluminescent 1,2,4-Triazole Deriative", Chemistry Letters, pp. 47-48 (1996).
Kido, J., et al., "Single-Layer White Light-Emitting Organic Electroluminescent Devices Based on Dye-Dispersed Poly(N-vinylcarbazole)", Appl. Phys. Lett., vol. 67, No. 16, pp. 2281-2283 (1995).
Larmat F., et al., "Electrochemical and Electronic Properties of Soc., vol. 37, No. 1, pp. 799-800 (1997).
Li, Xiao-Chang, et al.,. "Synthesis and Optoelectronic Properties of Aromatic Oxadiazole Polymers", J. Chem. Soc., Chem. Commun., pp. 2211-2212 (1995).
Miyaura, Norio, et al., "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds", Chem. Rev. vol. 95, No. 7, pp. 2457-2483 (1995).
Miyaura, N., et al., "The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases", Synthetic Communications, vol. 11, No. 7, pp. 513-519 (1981).
O'Brien, D., et al., "Electroluminescence Applications of a Poly(phenyl quinoxaline)", Synthetic Metals, vol. 76, pp. 105-108. (1996).
Ohmori, Yutaka, et al., "Blue Electroluminescent Diodes Utilizing Poly(alkylfluorene)", Jpn. J. of Appl. Phys., vol. 30, No. 11B, pp. L1941-L1943 (1991).
Ohmori, Yutaka, et al., "Carrier Transport in a Three-Layered Electroluminescent Device", J. Phys. D: Appl. Phys., vol. 29, pp. 2983-2987 (1996).
Ohmori, Yutaka, et al., "Enhancement of Emission Efficiency in Electroluminescent Diode Utilizing Vapor-Deposited Poly(alkylflourene)", Jpn. J. Appl. Phys., vol. 32, No. 11B, pp. L1663-L1666 (1993).
Ohmori, Yutaka, et al., "Visible-Light Electroluminescent Diodes Utilizing Poly(3-alkylthiophene)", Jpn. J. Appl. Phys., vol. 30, No. 11B. pp. L1938-L1940 (1991).
Remmers, Marcus, et al., "Synthesis, Optical Absorption and Fluorescence of New Poly(p-phenylene)-Related Polymers", Macromol. Rapid Commun., vol. 17, pp. 239-252 (1996).
Strukelj, Marko, et al., "Design and Application of Electron-Transporting Organic Materials", Science, vol. 267, pp. 1969-1972 (1995).
Tang, C. W., et al., "Electroluminescence of Doped Organic Thin Films", J. Appl. Phys., vol. 65, No. 9, pp. 3610-3616 (1989).
Tang, C. W., et al., "Organic Electrolumininescent Diodes", Appl. Phys. Lett., vol. 51, No. 12, pp. 913-915 (1987).
Uchida, M. et al., "Color-Variable Light-Emitting Diode Utilizing Conducting Polymer Containing Fluorescent Dye", Jpn. J. Appl. Phys., vol. 32, pp. L 921-L 924 (1993).
Wallow, Thomas I., et al., "Highly Efficient and Accelerated Suzuki Aryl Couplings Mediated by Phosphine-Free Palladium Sources", J. Org. Chem., vol. 59, No. 17, pp. 5034-5037 (1994).
Wallow, Thomas I., et al., "In Aqua Synthesis of Water-Soluble Poly(p-phenylene) Derivatives", J. Am. Chem. Soc., vol. 115, pp. 7412-7414 (1991).
Wallow, Thomas I., et al., "Palladium-mediated Poly(p-phenylene) Synthesis: Evidence for a Molecular Weight Limiting Phosphine Arylation Reaction", Polymer Preprints, vol. 34, No. 1 (1993).
Weaver, M. S., et al., "Recent Progress in Polymers for Electroluminescence: Microcavity Devices and Electron Transport Polymers", Thin Solid Films, vol. 273, pp. 39-47 (1996).
Wu, C. C. et al., "Poly(p-phenylene Vinylene)/Tris(8-hydroxy) Quinoline Aluminum Heterostructure Light Emitting Diode", Appl. Phys. Lett., vol. 66, No. 6, pp. 653-655 (1995).
Yamamoto, Takakazu, "Electrically Conducting and Thermally Stable-Conjugated Poly(Arylene)s Prepared by Organometallic Processes", Prog. Polym. Sci., vol. 17, pp. 1153-1205 (1992).
Yang, Kang, et al., "Novel Carbon Catalysis: Oxidation in Basic Solution", Journal of Organic Chemistry, vol. 58, p. 3754 (1958).
Yang, Yang, et al., "Efficient Blue-Green and White Light-Emitting Electrochemical Cells Based on 81, No. 7, pp. 3294-3298 (1997).
Yang, Y., et al., "Electron Injection Polymer for Polymer Light-Emitting Diodes", J. Appl. Ph

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

2, 7-aryl-9-substituted fluorenes and 9-substituted fluorene oli does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 2, 7-aryl-9-substituted fluorenes and 9-substituted fluorene oli, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 2, 7-aryl-9-substituted fluorenes and 9-substituted fluorene oli will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1172873

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.