Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters
Reexamination Certificate
2000-06-19
2002-08-20
Kumar, Shailendra (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carboxylic acid esters
C560S028000, C560S029000, C548S142000, C548S152000, C548S251000, C548S257000, C548S266800, C548S265800, C548S374100
Reexamination Certificate
active
06437169
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a naphthol derivative (to be also referred to as a “1-naphthol compound” hereinafter) which functions as a precursor of a compound having an acidic proton, and a method for preparing a compound having an acidic proton. More specifically, the present invention relates to a compound which is stable under alkali hydrolysis conditions and can rapidly release a compound having an acidic proton or the dissociated form of the compound when a nucleophilic substituent is introduced to the 4-position of naphthol, and a method for preparing a compound having an acidic proton.
A 1-naphthol compound of the present invention can be used as a compound for releasing a photographically useful compound and the like in a silver halide photosensitive material.
A technique which converts a compound having an acidic proton into a nonprotic compound (to be referred to as a block body hereinafter) for a certain predetermined period and regenerates the compound from this block body by giving a certain type of stimulus at a desired timing, is used in various fields handling organic compounds. The best known is the concept of protection and deprotection in organic synthetic reactions. For example, when a certain type of conversion reaction is to be performed for a compound having an acidic proton, if the desired reaction does not well progress because the acidic proton exists, this portion is once protected by a protective group to perform the desired reaction, and finally deprotection is performed to regenerate the acidic portion. Also, in the field of silver halide photosensitive materials, a technique is known by which the block body of a photographically useful compound having an acidic proton is incorporated in a photographically inert form into a sensitive material and the photographically useful group is released during development (in some cases, only at a portion where the development progresses). Examples are development inhibitor-releasing couplers described in U.S. patent application Ser. No. 4,248,962 and Jpn. Pat. Appln. KOKAI Publication No. 5-313322 and bleaching accelerator-releasing couplers described in Jpn. Pat. Appln. KOKAI Publication No. 61-201247. This technique also has an important meaning as one method of a drug delivery system in the field of medical treatments.
The most generally known block body of a compound having an acidic proton is a compound protected by a carbonyl group, such as A—COR (A represents the moiety of a compound having an acidic proton the pKa of a corresponding protonated form (AH) of which is 0 to 14, and R represents, e.g., an alkyl group, aryl group, alkoxy group, or amino group). In this block body simply protected by a carbonyl group, the AH can be regenerated (deblocked) by hydrolysis under alkaline conditions. However, the stability as a block body and the ease of deblocking have a tradeoff relationship. That is, when the stability as a block body (A—COR) is raised, the deblocking conditions become strict. If the deblocking conditions become strict, it is well possible that the regenerated AH is further hydrolyzed under the deblocking conditions. If this is the case, A—COR cannot substantially be the block body of AH.
As a method of breaking the tradeoff relationship between the stability of the block body of a compound having an acidic proton and the ease of deblocking from this block body, blocking in the form of methoxymethyl ether or benzyl ether is known refer, for example, to PROTECTIVE GROUP IN ORGANIC SYNTHESIS, John Wiley & Sons, Inc., Second Edition pp. 149-150 & 156-158). While these block bodies are stable under alkaline conditions, methoxymethyl ether can be deblocked under relatively moderate acidic conditions. Also, benzyl ether can be readily deblocked under moderate catalitic reducing conditions. However, these block bodies cannot be used for compounds that are unstable under acidic or reducing conditions.
Furthermore, although the development inhibitor-releasing couplers and bleaching accelerator-releasing couplers in the field of silver halide photosensitive materials described above are relatively stable under alkali hydrolysis conditions, they can release development inhibitors and bleaching accelerates only at exposed portions during development. However, in these examples the synthesis of a block body and the ease of deblocking largely depend upon the type of body to be blocked. Also, an azomethine dye is generated in addition to deblocking. Hence, any of these examples is not highly versatile as the block body of a compound having an acidic proton.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a compound effective as the block body of a compound having an acidic proton, which is stable under alkali hydrolysis conditions and can rapidly regenerate a compound having an acidic proton or the dissociated form thereof when a nucleophilic group is introduced to a specific position in a molecule.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
DETAILED DESCRIPTION OF THE INVENTION
The object of the present invention is achieved by a compound represented by formula (I) below:
wherein A represents the moiety of a compound having an acidic proton the pKa of a corresponding protonated form (AH) of which is 0 to 14, R
1
represents an aliphatic group, aryl group, or heterocyclic group, R
2
represents a substituent, n represents an integer of 0 to 5, X represents a hydrogen atom, halogen atom, R
11
—, R
11
O—, R
11
S—, R
11
OCOO—, R
12
COO—, R
12
(R
13
)NCOO—, R
12
CON(R
13
)—, —NO, —NO
2
, or —N═N—R
11
, and Y represents an oxygen atom or sulfur atom. R
11
represents an aliphatic group, aryl group, or heterocyclic group, and each of R
12
and R
13
independently represents a hydrogen atom, aliphatic group, aryl group, or heterocyclic group.
The present invention also provides a method for preparing a compound having an acidic proton in which a nucleophilic group is introduced to the 4-position of a 1-naphthol compound represented by formula (I) above and which is represented by AH by the intramolecular nucleophilic reaction.
Details of a compound represented by formula (I) will be described below.
A represents the moiety of a compound having an acidic proton the pKa of a corresponding protonated form (AH) of which is 0 to 14. Preferably, A represents the moiety of a compound having an acidic proton the pKa of a corresponding protonated form (AH) of which is 2 to 11.
Preferable examples of A are a 6- to 32-carbon, preferably 6- to 22-carbon substituted or nonsubstituted aryloxy group (e.g., phenoxy and naphthyloxy), a 1- to 32-carbon, preferably 1- to 22-carbon substituted or nonsubstituted heterocyclic oxy group (e.g., pyridyloxy and quinolyloxy), a 1- to 32-carbon, preferably 1- to 22-carbon substituted or nonsubstituted alkylthio group (e.g., methylthio, ethylthio, and butylthio), a 6- to 32-carbon, preferably 6- to 22-carbon substituted or nonsubstituted arylthio group (e.g., phenylthio and naphthylthio), a 1- to 32-carbon, preferably 1- to 22-carbon substituted or nonsubstituted heterocyclic thio group (e.g., tetrazolylthio, triazolylthio, oxazolylthio, imidazolylthio, benzimidazolylthio, benzothiazolylthio, and benzoxazolylthio), a 1- to 32-carbon, preferably 1- to 22-carbon substituted or nonsubstituted azole group (e.g., tetrazole, 1,2,3-triazole, 1,2,4-triazole, and benzotriazole), and a 2- to 32-carbon, preferably 2- to 22-carbon substituted or nonsubstituted carbonyloxy group (e.g., acetyloxy and benzoyloxy).
More preferable examples of A are an aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, heterocyclic thio group, and azole group described above (practical examples of these groups are tho
Ito Takayuki
Takaku Koji
Birch & Stewart Kolasch & Birch, LLP
Fuji Photo Film Co. , Ltd.
Kumar Shailendra
LandOfFree
1-naphthol compound and method for preparing compound having... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 1-naphthol compound and method for preparing compound having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 1-naphthol compound and method for preparing compound having... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2955959