1-benzylimidazole derivatives

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C548S338100

Reexamination Certificate

active

06482844

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to 1-benzylimidazole derivatives, and more specifically, to the use of such compounds as pharmaceutical agents, e.g., as modulators of blood glucose levels. This invention also relates to pharmaceutical compositions comprising such compounds and to the use of such compounds in treating a variety of disorders associated with feeding and food metabolism. Additionally, this invention relates to the use such compounds as probes for the localization of cellular receptors that are involved in the modulation of blood glucose levels.
2. Description of the Related Art
Diabetes mellitus is a chronic syndrome of impaired carbohydrate and fat metabolism resulting from insufficient insulin secretion and/or target tissue insulin resistance. It occurs in two major forms: insulin-dependent diabetes mellitus (IDDM, Type 1) and non-insulin-dependent diabetes mellitus (NIDDM, Type 2). These forms differ in their etiology, age of onset and treatment. Type 1 is often characterized by onset during childhood and the patients typically become fully dependent upon exogenous insulin to sustain life. The disorder is associated with a lack of insulin production by the pancreatic Islets of Langerhans. The disease is generally marked by a drastic reduction in the number of insulin secreting islet beta cells.
NIDDM usually appears later in life (typically ages 40-60) and is often associated with obesity. Patients with NIDDM show normal basal levels of insulin but display an abnormal insulin secretion response (delayed or reduced) to a glucose load. As the disease progresses, insulin target tissues show signs of diminished response to insulin (insulin resistance). Effective treatment of the disorder is usually obtained by dietary control, with or without the use of oral hypoglycemic drugs. Sulphonylureas are a class of hypoglycemic compounds used in the treatment of NIDDM. These drugs exert their action by causing insulin to be released from intracellular stores. Care must be taken in the administration of these agents in order to not induce severe hypoglycemia due to excessive insulin release. In addition, overdose may deplete insulin stores to a point requiring administration of exogenous insulin.
The discovery that glucose administered via the gastrointestinal tract provides greater stimulation of insulin release than a comparable glucose challenge given intravenously led to the identification of certain gut secreted ‘incretin’ hormones which augment glucose stimulated insulin secretion, and the identification of specific cell surface receptors that modulate the effects of such incretin hormones. Glucagon-like Peptide-1 (7-36)-amide (GLP-1) is one such incretin hormone that is secreted from gastrointestinal L cells in response to food intake and increases insulin secretion from pancreatic beta cells. GLP-1 is believed to exert its actions via binding to a G-protein-linked receptor expressed in islet &bgr;-cells.
Unlike the sulphonylureas, the effects of GLP-1 are dependent upon plasma glucose concentration; the insulinotropic effects of GLP-1 are abolished at low plasma glucose levels. In addition to its stimulation of insulin secretion, GLP-1 also increases insulin synthesis, inhibits glucagon secretion, and delays gastric emptying. This combination of actions gives GLP-1 unique potential therapeutic advantages over other agents presently used to treat non-insulin dependent diabetes mellitus. In a clinical trial of patients with NIDDM it was found that subcutaneous administration of GLP-1 could normalize postprandial glucose levels. Drugs that mimic the action of GLP-1, i.e. stimulate insulin secretion from pancreatic &bgr;-cells, but only at higher than normal blood glucose levels, are particularly desirable for use in the treatment of NIDDM. Such drugs may work by modulating the signal-transducing activity of the GLP-1 receptor.
In vitro experiments that monitor the interaction of the compound with GLP-1 receptors may also be used to reliably predict the effects of a compound on blood glucose levels. In one such experiment the interaction of compounds with GLP-1 receptors, expressed either recombinantly or naturally in high abundance in certain cell lines, may be determined by a cell-based luciferase screen or by binding experiments measuring competition binding, e.g., the competition of a test compound with a labeled GLP-1 ligand such as GLP-1 or GLP(7-36) peptide.
Receptors that are coupled to the G
s&agr;
stimulatory G-protein subunit transduce intracellular signals via the adenylate cyclase pathway. Stimulation of these receptors with an agonist typically results in an elevation of cytoplasmic cAMP levels, which can trigger the subsequent transcription of a variety of genes, generally those with promoters containing binding sites (CAMP responsive elements—CRES) for the transcription factor, CREB (CRE binding protein).
Receptor modulation may be measured via quantitation of transcriptional activation of a firefly luciferase reporter gene. Such an assay may use a Chinese hamster ovary cell line (CHO-K1) stably transfected with a GLP-1 receptor (a G
s&agr;
coupled receptor) expression plasmid and a luciferase reporter plasmid, wherein luciferase expression is under the transcriptional control of multiple CREs. In these cell lines, the GLP1 agonist GLP(7-36) peptide stimulates luciferase expression in a dose dependent manner with a potency (EC
50
~20 pM) similar to the data reported by Gromada et al. (1995)
FEBS Lett
. 373: 182-186.
Compounds may be screened by seeding 15,000 cells per well in opaque multi-well plates. Cells are then incubated overnight in a tissue culture incubator. Compounds are dispensed to a final concentration of 4 uM in 1% DMSO. After 6 hours of incubation, cells are assayed for luciferase activity, which is measured in a luminometer.
In clinical studies GLP-1 has been shown to reduce appetite and increase satiety in both normal weight and obese subjects. Thus, drugs that modulate the activity of the GLP-1 receptor may be useful for the treatment of obesity and eating disorders.
SUMMARY OF THE INVENTION
This invention provides novel compounds of Formula I, below, as well as non-toxic pharmaceutically acceptable salts thereof. As used herein and in the claims, the terms “compound” and “salt” encompass anhydrous forms as well as hydrates. The invention also provides novel compounds of Formula I that bind specifically, and preferably with high affinity, to specific cellular receptors. Preferably the receptors are cell surface receptors, more preferably G-protein coupled receptors, yet more preferably the receptors are Secretin-like receptors, highly preferred receptors are GLP receptors, most preferably the receptors are GLP-1 receptors. Such compounds are useful in the treatment of diabetes, especially non-insulin-dependent diabetes mellitus (Type 2 diabetes), and in the treatment of obesity and eating disorders. Preferred compounds of the invention are non-toxic.
The invention further comprises methods of treating patients suffering from diabetes, especially non-insulin-dependent diabetes mellitus (Type 2 diabetes), obesity or eating disorders by administering to a patient in need of such treatment an effective amount of a compound of the invention. The patient may be a human or another, preferably mammalian, animal. Treatment of humans, domesticated companion animals (pets) or livestock animals suffering from these disorders with an effective amount of a compound of the invention is also encompassed by the invention. For veterinary applications, a wide variety of subjects will be suitable, e.g. livestock such as cattle, sheep, goats, cows, swine and the like; and domesticated animals particularly pets such as dogs and cats. For diagnostic or research applications, a wide variety of mammals will be suitable subjects including rodents (e.g. mice, rats, hamsters), rabbits, primates, and swine such as outbred or inbred pigs and the like. Additionally, for in vitro applications, such as in vitro diagnosti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

1-benzylimidazole derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 1-benzylimidazole derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 1-benzylimidazole derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2947421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.