1,3-diheterocyclic metalloprotease inhibitors

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S230000, C544S243000, C544S298000, C544S319000

Reexamination Certificate

active

06465474

ABSTRACT:

TECHNICAL FIELD
This invention is directed to compounds which are useful in treating diseases, disorders and conditions associated with unwanted metalloprotease activity.
BACKGROUND
A number of structurally related metalloproteases [MPs] effect the breakdown of structural proteins. These metalloproteases often act on the intercellular matrix, and thus are involved in tissue breakdown and remodeling. Such proteins are referred to as metalloproteases or MPs. There are several different families of MPs, classified by sequence homology. Several families of known MPs, as well as examples thereof, are disclosed in the art.
These MPs include Matrix-Metallo Proteases [MMPs], zinc metalloproteases, many of the membrane bound metalloproteases, TNF converting enzymes, angiotensin-converting enzymes (ACEs), disintegrins, including ADAMs (See Wolfsberg et al, 131
J. Cell Bio.
275-78 October, 1995), and the enkephalinases. Examples of MPs include human skin fibroblast collagenase, human skin fibroblast gelatinase, human sputum collagenase, aggrecanse and gelatinase, and human stromelysin, Collagenase, stromelysin, aggrecanase and related enzymes are thought to be important in mediating the symptomatology of a number of diseases.
Potential therapeutic indications of MP inhibitors have been discussed in the literature. See for example, U.S. Pat. No. 5,506,242 (Ciba Geigy Corp.); U.S. Pat. No. 5,403,952 (Merck & Co.); PCT published application WO 96/06074 (British Bio Tech Ltd); PCT Publication WO 96/00214 (Ciba Geigy); WO 95/35275 (British Bio Tech Ltd); WO 95/35276 (British Bio Tech Ltd); WO 95/33731 (Hoffman-LaRoche); WO 95/33709 (Hoffman-LaRoche); WO 95/32944 (British Bio Tech Ltd); WO 95/26989 (Merck); WO 9529892 (DuPont Merck); WO 95/24921 (Inst. Opthamology); WO 95/23790 (SmithKline Beecham); WO 95/22966 (Sanofi Winthrop); WO 95/19965 (Glycomed); WO 95 19956 (British Bio Tech Ltd); WO 95/19957 (British Bio Tech Ltd); WO 95/19961 (British Bio Tech Ltd) WO 95/13289 (Chiroscience Ltd.); WO 95/12603 (Syntex); WO 95/09633 (Florida State Univ); WO 95/09620 (Florida State Univ.); WO 95/04033 (Celltech); WO 94/25434 (Celltech); WO 94/25435 (Celltech); WO 93/14112 (Merck); WO 94/0019 (Glaxo); WO 93/21942 (British Bio Tech Ltd); WO 92/22523 (Res. Corp. Tech. Inc.); WO 94/10990 (British Bio Tech Ltd); WO 93/09090 (Yamanouchi); and British patents GB 2282598 (Merck) and GB 2268934 (British Bio Tech Ltd); Published European Patent Applications EP 95/684240 (Hoffman LaRoche); EP 574758 (Hoffman LaRoche); EP 575844 (Hoffman LaRoche); Published Japanese applications; JP 08053403 (Fujusowa Pharm. Co. Ltd.); JP 7304770 (Kanebo Ltd.); and Bird et al
J. Med Chem
vol. 37, pp. 158-69(1994). Examples of potential therapeutic uses of MP inhibitors include rheumatoid arthritis (Mullins, D. E., et al.,
Biochim. Biophys. Acta.
(1983) 695:117-214); osteoarthritis (Henderson, B., et al.,
Drugs of the Future
(1990) 15:495-508); the metastasis of tumor cells (ibid, Broadhurst, M. J., et al., European Patent Application 276,436 (published 1987), Reich, R., et al., 48
Cancer Res.
3307-3312 (1988); and various ulcerations or ulcerative conditions of tissue. For example, ulcerative conditions can result in the cornea as the result of alkali burns or as a result of infection by Pseudomonas aeruginosa, Acanthamoeba, Herpes simplex and vaccinia viruses.
Other examples of conditions characterized by undesired metalloprotease activity include periodontal disease, epidermolysis bullosa, fever, inflammation and scleritis (Cf. DeCicco et al, WO 95 29892 published Nov. 9, 1995).
In view of the involvement of such metalloproteases in a number of disease conditions, attempts have been made to prepare inhibitors to these enzymes. A number of such inhibitors are disclosed in the literature. Examples include U.S. Pat. No. 5,183,900, issued Feb. 2, 1993 to Galardy; U.S. Pat. No. 4,996,358, issued Feb. 26, 1991 to Handa, et at.; U.S. Pat. No. 4,771,038, issued Sep. 13, 1988 to Wolanin, et al.; U.S. Pat. No. 4,743,587, issued May 10, 1988 to Dickens, et al., European Patent Publication Number 575,844, published Dec. 29, 1993 by Broadhurst, et al.; International Patent Publication No. WO 93/09090, published May 13, 1993 by Isomura, et al.; World Patent Publication 92/17460, published Oct. 15, 1992 by Markwell et al.; and European Patent Publication Number 498,665, published Aug. 12, 1992 by Beckett, et al.
Metalloprotease inhibitors are useful in treating diseases caused, at least in part, by breakdown of structural proteins. Though a variety of inhibitors have been prepared, there is a continuing need for potent matrix metalloprotease inhibitors useful in treating such diseases. Applicants have found that, surprisingly, the compounds of the present invention are potent metalloprotease inhibitors.
OBJECTS OF THE INVENTION
Thus it is an object of the present invention to provide compounds useful for the treatment of conditions and diseases which are characterized by unwanted MP activity.
It is also an object of the invention to provide potent inhibitors of metalloproteases.
It is a further object of the invention to provide pharmaceutical compositions comprising such inhibitors.
It is also an object of the invention to provide a method of treatment for metalloprotease related maladies.
SUMMARY OF THE INVENTION
The invention provides compounds which are useful as inhibitors of metalloproteases, and which are effective in treating conditions characterized by excess activity of these enzymes. In particular, the present invention relates to a compound having a structure according to Formula (I)
wherein
R
1
is H;
R
2
is hydrogen, alkyl, or acyl;
Ar is COR
3
or SO
2
R
4
; and
R
3
is alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;
R
4
is alkyl, heteroalkyl, aryl, or heteroaryl, substituted or unsubstituted;
X is O, S, SO, SO
2
, or NR
5
, wherein R
5
is independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO
2
R
6
, COR
7
, CSR
8
, PO(R
9
)
2
or may optionally form a ring with Y or W; and
R
6
is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;
R
7
is hydrogen, alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;
R
8
is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;
R
9
is alkyl, aryl, heteroaryl, heteroalkyl;
W is hydrogen or one or more lower alkyl moieties, or a heterocycle, or is an alkylene, arylene or heteroarylene bridge between two adjacent or nonadjacent carbons (thus forming a fused ring);
Y is independently one or more of hydrogen, hydroxy, SR
10
, SOR
4
, SO
2
R
4
, alkoxy, amino, wherein amino is of formula NR
11
, R
12
, wherein R
11
and R
12
are independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO
2
R
6
, COR
7
, CSR
8
, PO(R
9
)
2
; and
R
10
is hydrogen, alkyl, aryl, heteroaryl;
Z is nil, a spiro moiety or an oxo group substituted on the heterocyclic ring;
n is 1-4.
This structure also includes an optical isomer, diastereomer or enantiomer for Formula (I), or a pharmaceutically-acceptable salt, or biohydrolyzable amide, ester, or imide thereof.
These compounds have the ability to inhibit at least one mammalian metalloprotease. Accordingly, in other aspects, the invention is directed to pharmaceutical compositions containing the compounds of Formula (I), and to methods of treating diseases characterized by unwanted metalloprotease activity using these compounds or the pharmaceutical compositions containing them.
Metalloproteases which are active at a particularly undesired location (e.g., an organ or certain types of cells) can be targeted by conjugating the compounds of the invention to a targeting ligand specific for a marker at that location such as an antibody or fragment thereof or a receptor ligand. Conjugation methods are known in the art.
The i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

1,3-diheterocyclic metalloprotease inhibitors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with 1,3-diheterocyclic metalloprotease inhibitors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 1,3-diheterocyclic metalloprotease inhibitors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2976443

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.