Method for determining the presence of organisms in a sample by

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

536 231, 536 243, 536 2431, 536 2432, C12Q 168, C07H 2104

Patent

active

059288647

ABSTRACT:
A method for detecting and quantitating organisms containing R-RNA, t-RNA, other RNA, any member of a large, intermediate or small category of organisms such as any member of a bacterial taxonomic Family, Genus, or Species, and previously unknown organisms. The method comprises contacting the nucleic acid of the organisms whose presence, identification and quantitation are to be determined, with a marked probe comprising nucleic acid molecules complementary to RNA or other nucleic acid sequences, of the said organism, under nucleic acid hybridization conditions, and then determining the degree of hybridization that has occurred. The method may include contacting a sample with an enzyme-detergent mixture to make the nucleic acids of the organism or virus in a sample more readily available for hybridization. The method can also be used to determine the sensitivity of particular groups of organisms to antimicrobial agents, to determine the presence of substances with antimicrobial activity, and to determine the state of growth of microorganisms and other cells.

REFERENCES:
patent: 3755086 (1973-08-01), Heimer
patent: 3930956 (1976-01-01), Juni
patent: 4033143 (1977-07-01), Juni
patent: 4228238 (1980-10-01), Swanson
patent: 4237224 (1980-12-01), Cohen et al.
patent: 4275149 (1981-06-01), Litman et al.
patent: 4302204 (1981-11-01), Wahl et al.
patent: 4358535 (1982-11-01), Falkow et al.
patent: 4394443 (1983-07-01), Weissman et al.
patent: 4416988 (1983-11-01), Rubin
patent: 4480040 (1984-10-01), Owens et al.
patent: 4677054 (1987-06-01), White et al.
patent: 4717653 (1988-01-01), Webster
patent: 4851330 (1989-07-01), Kohne
patent: 5087558 (1992-02-01), Webster
patent: 5288611 (1994-02-01), Kohne
patent: 5348854 (1994-09-01), Webster
Abou-Sabe and Pilla, "Transposition of the D-Ribose Operon of E.coli B/r," Abstract of the Annual Meeting of the American Society for Microbiology (1981), Rutgers University, New Brunswick, N.J.
Agarwal et al., "Total Synthesis of the Gene for an Alanine Transfer Ribonucleic Acid from Yeast," Nature 227:27-34 (1970).
Alwine et al., "Method for Detection of Specific RNAs in Agarose Gels by Transfer To Diazobenzyloxymethyl-Paper and Hybridization with DNA Probes," Proc. Natl. Acad. Sci. USA 74:5350-5354 (1977).
Amikam et al., "Mycoplasmas (Mollicutes) Have a Low Number of rRNA Genes," Journal of Bacteriology 158:376-378 (1984).
Amikam et al., "Ribosomal RNA genes in Mycoplasma," Nucleic Acids Research 10:4215-4222 (1982).
Bahareen et al., "Complementary DNA--25S ribosomal RNA hybridization: and improved method for phylogenetic studies," Can. J. Microbiol. 29:546-551 (1983).
Baharaeen, "The evolution of antarctic yeasts," Ph.D. Thesis: Oklahoma State University; Diss. Abs. Int. 43/10B:3138-3297 (1982).
Bailey and Scott, Diagnostic Microbiology, 4th ed. (St. Louis: The C.V. Mosby Company, 1974) 327-328.
Baker et al., "Delayed Hypersensitivity Reactions Provoked by Ribosomes from Acid-Fast Bacilli," Infection and Immunity 6:258-265 (1972).
Baker et al., "Ribosomes of Acid-Fast Bacilli: Immunogenicity Serology, and In Vitro Correlates of Delayed Hypersensitivity," Infection and Immunity 8:236-244 (1973).
Balch et al., "An Ancient Divergence among the Bacteria," J. Mol. Evol. 9:305-311 (1977).
Balch et al., "Methanogens: Reevaluation of a Unique Biological Group," Microbiological Reviews 43:260-296 (1979).
Barry et al., "The 16s/23s Ribosomal Spacer Region as a Target for DNA Probes to Identify Eubacteria," PCR Methods and Application 81:51-56 (1991).
Baumlein et al., "The Basic Repeat Unit of a Chlronomus Balbiani Ring Gene," Nucleic Acids Research 10:3893-3904 (1982).
Bendich and McCarthy, "Ribosomal RNA Homologies among Distantly Related Organisms," Proc. Natl. Acad. Sci. 65:349-356 (1970).
Bicknell and Douglas, "Nucleic Acid Homologies Among Species of Saccharomyces," Journal of Bacteriology 101:505-512 (1970).
Blair et al., "Unfolded 30 S Ribosomal Subunits," Biophysical Chemistry 14:81-89 (1981).
Bohnert et al., "Homologies Among Ribosomal RNA and Messenger RNA Genes in Chloroplasts, Mitochondria and E. coli," Molecular Gene Genetics 179:539-545 (1980).
Bonen et al., "Cyanobacterial evolution: results of 16S ribosomal ribonucelic acid sequence analysis," Can. J. Biochem. 57:879-888 (1979).
Borras et al., "Inability to Transmit Scrapie by Transfection of Mouse Embryo Cells in vitro," J. Gen. Virol. 58:263-271 (1982).
Brenner et al., "Batch Procedure for Thermal Elution of DNA from Hydroxyapatite," Anal. Biochem. 28:447-459 (1969).
Brenner et al., "Conservation of Transfer Ribonucleic Acid and 5S Ribonucleic Acid Cistrons in Enterobacteriaceae" Journal of Bacteriology 129:1435-1439 (1977).
Brenner, "Deoxyribonucleic Acid Reassociation in the Taxonomy of Enteric Bacteria," Int. J. Systematic Bacteriology 23:298-307 (1973).
Brenner and Falkow, "Molecular Relationships Among Members of The Enterobacteriaceae," Advances in Genetics 16:81-118 (1971).
Britten et al., "Analysis of Repeating DNA Sequences by Reassociation," Methods in Enzymology eds. Grossman and Moldave (Academic Press:NY 1974) Ch. 29, pp. 363-419.
Britten and Kohne, "Implications of repeated nucleotide sequences," in Handbook of Molecular Cytology, ed. A. Neuberger and E.L. Tatum (North-Holland Publishing Co.:Amsterdam, 1969) vol. 15, pp. 38-51.
Britten and Kohne, "Repitition of nucleotide sequences in chromosomal DNA," in Handbook of Molecular Cytology, ed. A. Neuberger and E.L. Tatum (North-Holland Publishing Co.:Amsterdam, 1969) vol. 15, pp. 22-36.
Britten and Kohne, "Repeated Segments of DNA," Sci. Amer. 222:24-31 (1970).
Britten and Kohne, "Repeated Sequences in DNA," Science 161:529-540 (1968).
Brooks, "Calbiochem.RTM. Hydroxylapatite," Calbiochem.RTM. Brand Biochemicals Behring Diagnostics, Div. of American Hoechst Corp., pp. 3-32 (1981).
Brooks et al., "Red Pigmented Microococci: a Basis for Taxonomy," Intl. J. Syst. Bacteriol. 30:627-646 (1980).
Brown et al., "Chemical Disinfection of Creutzfeldt-Jakob Disease Virus," New England Journal of Medicine 306:1279-1282 (1982).
Byers et al., "Presence of Virus-specific DNA Sequences in Murine Type C Viruses," J. gen. Virol. 43:611-621 (1979).
Carbon et al., "The sequence of the 16S RNA from Proteins vulgaris. Sequence comparison with E. coli 165 RNA and its use in secondary structure model building," Nucleic Acids Research 9:2325-2333 (1981).
Casey and Davidson, "Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide," Nucleic Acids Research 4:1539-1552 (1977).
Chattopadhyay et al., "Ribosomal RNA Genes of Neurospora: Isolation and Characterization," Proc. Natl. Acad. Sci. USA 69:3256-3259 (1972).
Chung et al., "Characterization of the histone core complex," Proc. Natl. Acad. Sci. USA 75:1680-1684 (1978).
Conner et al., "Detection of sickle cell .beta..sup.s -globin allele by hybridization with synthetic oligonucleotides," Proc. Natl. Acad. Sci. USA 80:278-282 (1983).
Cox and Kelly, "Structural Aspects of Eukaryotic Ribosomes," Biochem. Soc. Symp. 47:11-48 (1982).
Cox and Thompson, "Distribution of Sequences common to the 25-28S-Ribonucleic Acid Genes of Xenopus laevis and Neurospora crassa," Biochem. J. 187:75-90 (1980).
Cunningham, "Spot Blot: A Hybridization Assay for Specific DNA Sequences in Multiple Samples," Analytical Biochemistry 128:415-421 (1983).
Curtis, "Studies on the nuclear genome of Euglena gracilis," Diss. Abs. Int. 41:3683 (1981).
Daniell et al., "Characterization of the Inhomogeneous DNA in Virions of Bacteriophage Mu by DNA Reannealing Kinetics," Journal of Virology 15:739-743 (1975).
Daubert and Dahmus, "Synthesis and characterization of a DNA probe complementary to rat liver 28S ribosomal RNA," Biochem. and Biophys. Res. Comm. 68:1037-1044 (1976).
De Ley, "Modern Molecular Methods in Bacterial Taxonomy: Evaluation, Application, Prospects," Proc. 4th Int. Conf. Plant. Path. Bact.-Angers. 347-357 (1978).
De Ley and De Smedt, "Improvements of the membrane filter method for DNA:rRNA hybridization," Antonie van Leeuwenhoek 41:287-307 (1975).
De Ley et al, "Intra- and i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for determining the presence of organisms in a sample by does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for determining the presence of organisms in a sample by , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for determining the presence of organisms in a sample by will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-877364

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.