Amino ceramide-like compounds and therapeutic methods of use

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514408, A61K 3140

Patent

active

060403322

ABSTRACT:
Novel amino ceramide-like compounds are provided which inhibit glucosyl ceramide (GlcCer) formation by inhibiting the enzyme GlcCer synthase, thereby lowering the level of glycosphingolipids. The compounds of the present invention have improved GlcCer synthase inhibition activity and are therefore highly useful in therapeutic methods for treating various conditions and diseases associated with altered glycosphingolipid levels.

REFERENCES:
patent: 5631394 (1997-05-01), Wei et al.
Abe, A. et al., "Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth, " Chemical Abstracts 122(23):281432s p. 32 (1995).
Abe, A. et al., "Improved Inhibitors of Glucosylceramide Synthesis," J. Biochem. 111:191-196 (1992).
Abe, A. et al., "Metabolic Effects of Short-Chain Ceramide and Glucosylceramide on Sphingolipids and Protein Kinase C," Eur. J. Biochem. 210:765-773 (1992).
Abdel-Magid, A. et al., "Metal-Assisted Aldol Condensation of Chiral A-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Synthesis," J. Am. Chem. Soc. 108:4595-4602 (1986).
Alon, R. et al., "Glycolipid Ligands for Selectins Support Leukocyte Tethering & Rolling Under Physiologic Flow Conditions," J. Immunol. 154:5356-5366 (1995).
Bielawska, A. et al., "Modulation of Cell Growth and Differentiation by Ceramide," FEBS Letters 307:211-214 (1992).
Bielawska, A. et al., "Ceramide-Mediated Biology. Determination of Structural and Stereospecific Requirements Through the Use of N-Acyl-Phenylaminoalcohol Analogs," J. Biol. Chem. 267:18493-18497 (1992).
Blobe, G.C. et al., "Regulation of PKC and Its Role in Cancer Biology," Cancer Metastasis Rev. 13:411-431 (1994).
Brenkert, A. et al., "Synthesis of Galactosyl Ceramide and Glucosyl Ceramide by the Rat Brain: Assay Procedures and Changes with Age," Brain Res. 36:183-193 (1972).
Carson, K.G. et al., "Studies on Morpholinosphingolipids: Potent Inhibitors of Glucosylceramide Synthase," Tetrahedron Lett. 35:2659-2662 (1994).
Evans, D.A. et al., "Stereoselective Aldol Condensations Via Boron Enolates," J. Am. Chem. Soc. 103:3099-3111 (1981).
Felding-Habermann, B. et al., "A Ceramide Analog Inhibits T Cell Proliferative Response Through Inhibition of Glycosphingolipid Synthesis and Enhancement of N,N-Dimethylsphingosine Synthesis," Biochemistry 29:6314-6322 (1990).
Gatt, S. et al., "Assay of Enzymes of Lipid Metabolism With Colored and Fluorescent Derivatives of Natural Lipids," Meth. Enzymol. 72:351-375 (1981).
Hakomori, S. "New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy," Cancer Cells 3:461-470 (1991).
Hospattankar, A.V. et al., "Changes in Liver Lipids After Administration of 2-Decanoylamino-3-Morpholinopropiophenone and Chlorpromazine," Lipids 17:538-543 (1982).
Inokuchi, J. et al., "Preparation of the Active Isomer of 1-Phenyl-2-Decanoylamino-3-Morpholino-1-Propanol, Inhibitor of Glucocerebroside Synthetase," J. Lipid Res. 28:565-571 (1987).
Inokuchi, J. et al., "Antitumor Activity in Mice of an Inhibitor of Glycosphingolipid Biosynthesis," Cancer Lett. 38:23-30 (1987).
Inokuchi, J. et al., "Inhibition of Experimental Metastasis of Murine Lewis Long Carcinoma by an Inhibitor of Glucosylceramide Synthase and its Possible Mechanism of Action," Cancer Res. 50:6731-6737 (1990).
Jaffrezou,J. et al., "Inhibition of Lysosomal Acid Sphingomyelinase by Agents which Reverse Multidrug Resistance," Biochim. Biophys. Acta. 1266:1-8 (1995).
Kalen, A. et al., "Elevated Ceramide Levels in GH4C1 Cells Treated with Retinoic Acid," Biochim. Biophys. Acta 1125:90-96 (1992).
Kopaczyk, K. C. et al., "In Vivo Conversions of Cerebroside and Ceramide in Rat Brain," J. Lipid Res. 6:140-145 (1965).
Nakamura, K. et al., "Coomassie Brilliant Blue Staining of Lipids on Thin-Layer Plates," Anal. Biochem. 142:406-441 (1984).
Nicolaou, K.C. et al., "A Practical and Enantioselective Synthesis of Glycosphingolipids and Related Compounds. Total Synthesis of Globotriaosylceramide (Gb.sub.3)," J. Am. Chem. Soc. 110:7910-7912 (1988).
Preiss, J.E. et al., "Quantitative Measurement of SN-1,2-Diacylglycerols Present in Platelets, Hepatocytes, and Ras-and Sis-Transformed Normal Rat Kidney Cells," J. Biol. Chem. 261:8597-8600 (1986).
Radin, N.S. et al., "Use of 1-Phenyl-2-Decanoylamino-3-Morpholino-1-Propanol (PDMP), an Inhibitor of Glucosylceramide Synthesis," In NeuroProtocols, A Companion to Methods in Neurosciences, S. K. Fisher et al., Ed., (Academic Press, San Diego) 3:145-155 (1993).
Radin, N.S. et al., "Metabolic Effects of Inhibiting Glucosylceramide Synthesis with PDMP and Other Substances," In Advances in Lipid Research; Sphinogolipids in Signaling, Part B., R.M. Bell et al., Ed. (Academic Press, San Diego) 28:183-213 (1993).
Radin N.S. et al., "Ultrasonic Baths as Substitutes for Shaking Incubator Baths," Enzyme 45:67-70 (1991).
Rosenwald, A.G. et al., "Effects of the Glycosphingolipid Synthesis Inhibitor, PDMP, on Lysosomes in Cultured Cells," J. Lipid Res. 35:1232 (1994).
Rosenwald, A.G. et al., "Effects of a Sphingolipid Synthesis Inhibitor on Membrane Transport Through the Secretory Pathway," Biochemistry 31:3581-3590 (1992).
Shayman, J.A. et al., "Modulation of Renal Epithelial Cell Growth by Glucosylceramide: Association with Protein Kinase C, Sphingosine, and Diacylglyceride," J. Biol. Chem. 266:22968-22974 (1991).
Shukla, G.S. et al., "Glucosylceramide Synthase of Mouse Kidney: Further Characterization and Improved Assay Method," Arch. Biochem. Biophys. 283:372-378 (1990).
Shukla, A. et al., "Metabolism of D-[.sup.3 H]PDMP, an Inhibitor of Glucosylceramide Synthesis, and the Synergistic Action of an Inhibitor of Microsomal Monooxygenase," J. Lipid Res. 32:713-722 (1991).
Skehan, P. et al., "New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening," J. Natl. Cancer Inst. 82:1107-1112 (1990).
Strum, J.C. et al., "1-.beta.-D-Arabinofuranosylcytosine Stimulates Ceramide and Diglyceride Formation in HL-60 Cells," J. Biol. Chem. 269:15493-15497 (1994).
Svensson, M. et al., "Epithelial Glucosphingolipid Expression as a Determinant of Bacterial Adherence and Cytokine Production," Infect. and Immun. 62:4404-4410 (1994).
Tang, W. et al., "Phorbol Ester Inhibits 13-Cis-Retinoic Acid-Induced Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate in Cultured Murine Keratinocytes: a Possible Negative Feedback Via Protein Kinase C-Activation," Cell. Bioch. Funct. 9:183-191 (1991).
Uemura, K. et al., "Effect of an Inhibitor of Glucosylceramide Synthesis on Cultured Rabbit Skin Fibroblasts," J. Biochem. (Tokyo) 108:525-530 (1990).
Vunnam, R.R. et al., "Analogs of Ceramide that Inhibit Glucocerebroside Synthetase in Mouse Brain," Chem. Phys. Lipids 26:265-278 (1980).
Zador, I.Z. et al., "A Role for Glycosphingolipid Accumulation in the Renal Hypertrophy of Streptozotocin-Induced Diabetes Mellitus," J. Clin. Invest. 91:797-803 (1993).
Ziche, M. et al., "Angiogenesis Can Be Stimulated or Repressed in In Vivo by a Change in GM3:GD3 Ganglioside Ratio," Lab. Invest. 67:711-715 (1992).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Amino ceramide-like compounds and therapeutic methods of use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Amino ceramide-like compounds and therapeutic methods of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Amino ceramide-like compounds and therapeutic methods of use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-730700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.