Supports incorporating vertical cavity emitting lasers and track

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 6, 435 71, 435DIG41, 435DIG45, 436501, 436518, 422 55, 365129, 365151, 365155, C12Q 100, G01N 3553, G01N 2100, G11C 1100

Patent

active

060964960

ABSTRACT:
A combinatorial chemistry bead that includes an electromagnetic spectral emitter that radiates a distinct electromagnetic code for each bead that uniquely identifies each bead, a terminal apparatus for receiving the electromagnetic code from each bead, and a method for performing combinatorial synthesis using a bead that transmits a distinct electromagnetic code. The invention includes a large number of spectrally narrowed light emitting mechanisms for generating distinct optical codes.

REFERENCES:
patent: 4539507 (1985-09-01), VanSlyke et al.
patent: 4833092 (1989-05-01), Geysen
patent: 5034613 (1991-07-01), Denk et al.
patent: 5136572 (1992-08-01), Bradley
patent: 5141671 (1992-08-01), Bryan et al.
patent: 5214409 (1993-05-01), Beigel
patent: 5252962 (1993-10-01), Urbas et al.
patent: 5257011 (1993-10-01), Beigel
patent: 5266926 (1993-11-01), Beigel
patent: 5351052 (1994-09-01), D'Hont et al.
patent: 5405709 (1995-04-01), Littman et al.
patent: 5409783 (1995-04-01), Tang et al.
patent: 5438878 (1995-08-01), Carroll, Jr.
patent: 5448582 (1995-09-01), Lawandy
patent: 5558904 (1996-09-01), Hsieh et al.
patent: 5565324 (1996-10-01), Still et al.
patent: 5641634 (1997-06-01), Mandecki
patent: 5751629 (1998-05-01), Nova et al.
patent: 5770455 (1998-06-01), Cargill et al.
Optics & Filters, Oriel Corporation, vol. III.
Fumitomo Hide, Maria A. Diaz-Garcia, and Alan J. Heeger, Luminescent Polymers Promise Novel Lasers, Laser Focus World, May 1997, pp. 151-156.
R.M. Balachandran, D.P. Pacheco, and N.M. Lawandy, Laser Action in Polymeric Gain Media Containing Scattering Particles, Applied Optics, vol. 35, No. 4, Feb. 1, 1996, pp. 640-643.
N.E.J. Hunt, E.F. Schubert, R.A. Logan, and G.J. Zydzik, Enhanced Spectral Power Density and Reduced Linewidth at 1.3.mu.m in an INGAAsP Quantum Well Resonant-Cavity Light-Emitting Diode, Appl. Phys. Lett. 61 (19), Nov. 9, 1992, American Institute of Physics, pp. 2287-2289.
J.A. Lott, R.P. Schneider, Jun., G.A. Vawter, J.C. Zolper and K.J. Malloy, Visible (660 nm) Resonant Cavity Light-Emitting Diodes, Electronics Letters, Feb. 18, 1993, vol. 29, No. 4, pp. 328-329.
Sydney Brenner and Richard A. Lerner, Encoded Combinatorial Chemistry, Proc. Natl. Acad. Sci. USA, vol. 89, Jun. 1992, pp. 5381-5383.
Fumitomo Hide, Maria A. Diaz-Garcia, Benjamin J. Schwartz, Mats R. Andersson, Qibing Pei, Alan J. Heeger, Semiconducting Polymers: A New Class of Solid-State Laser Materials, Science, vol. 273, Sep. 27, 1996, pp. 1833-1837.
Stephen P.A. Fodor, J. Leighton Read, Michael C. Pirrung, Lubert Stryer, Amy Tsai Lu, Dennis Solas, Light-directed, Spatially Addressable Parallel Chemical Synthesis, Research Article, Science, vol. 251, Feb. 15, 1991, pp. 767-773.
Anthony Yen, Erik H. Anderson, R.A. Ghanbari, M.L. Schattenburg, and Henry I. Smith, Achromatic Holographic Configuration For 100-nm-period Lithography, Applied Optics, vol. 31, No. 22, Aug. 1, 1992, pp. 4540-4544.
H.B. Lon and A.J. Campillo, New Nonlinear Optics in Droplet Microcavities Displaying Enhanced Gain, Physical Review Letters, vol. 73, No. 18, Oct. 31, 1994 The American Physical Society, pp. 2440-2443.
Nabil M. Lawandy, `Paint-On Lasers` Light the Way for New Technologies, Photonics Spectra, Jul. 1994, pp. 119-122.
Edmund J. Moran, et al., Radio Frequency Tag Encoded Combinatorial Library Method for the Discovery of Tripeptide-Substituted Cinnamic Acid Inhibitors of the Protein Tyrosine Phosphatase PTPIB, J. Am. Chem. Soc., 1995, 117, 10787-10788.
Process Builds Silicon RF Chips, Electrical Engineering Times, Nov. 25, 1996, pp 37-38.
K.C. Nicolaou, Xiao-Yi Xiao, Zahra Parandoosh, Andrew Senyei, Michael P. Nova, Radiofrequency Encoded Combinatorial Chemistry, Agnew, Chem. Int. Ed. Engl., 1995, 34, No. 20.
J. Gruner, F. Cacialli, and R.H. Friend, Appl. Phys. 80, Jul. 1, 1996, pp. 207-215.
N. Tessler, G.J. Denton & R.H. Friend, Lasing from Conjugated-Polymer Microcavites, Nature, vol. 382, Aug. 22, 1996, pp. 695-697.
A. Dodabalapur, L.J. Rothberg, and T.M. Miller, Color Variation with Electroluminescent Organic Semiconductors in Multimode Resonant Cavities, Appl. Phys. Lett., vol. 65, Oct. 31, 1994, pp 2308-2310.
A. Dodabalapur, L.J. Rothenberg, t.M. Miller and E.W. Kwock, Microcavity Effects in Organic Semiconductors, Appl. Phys. Lett, vol. 64 (19), May 9, 1994, pp. 2486-2488.
C.W. Tang, S.A. VanSlyke, and C.H. Chen, Electroluminescence of Doped Organic Thin Fims, J. Appl. Phys. vol. 65 (9), May 1, 1989, pp. 3610-3616.
S.A. VanSlyke, C.H. Chen and C.W. Tang, Organic Electroluminescent Devices with Improved Stability, Appl. Phys. Lett. vol. 69, No. 15, Oct. 7, 1996, pp. 2160-2162.
C.W. Tang and S.A. VanSlyke, Organic Electroluminescent Diodes, Appl. Phys. Lett., vol. 51, No. 12, Sep. 21, 1987, pp. 913-915.
V. Bulovic G. Gu, P.E. Burrows, S.R. Forrest, M. E. Thompson, Transparent Light-Emitting Devices, Nature, vol. 380, Mar. 7, 1996, p. 29.
Michael A. Scobey, Walter J. Lekki and Thomas W. Geyer, Filters Create Thermally Stable, Passive Muliplexers, Laser Focus World, Mar. 1997, pp. 111-116.
H. Yokoyama, Physics and Device Applications of Optical Microcavities, Science, vol. 256, Apr. 3, 1992, pp. 66-70.
S.M. Sze, Physics of Semiconductor Devices, Chapter 13 (1981), pp. 743-789.
S.M. Sze, Solar Cells, Chapter 14 (1981), pp. 790-838.
Charles A. Harper and Harold C. Jones, Active Electronic Component Handbook, Phototonic Components, Chapter 9, pp. 9.52-9.61, (1996).
Charles A. Harper and Harold C. Jones, Active Electronic Component Handbook, Component Parts for Microwave Systems, Chapter5, pp. 5.2-5.21, (1996).
Amnon Yariv, Quantum Electronics, Guided Wave Optics-Propagation on Optical Fibers, Chapter 22, pp. 604-623, (1989).
Amnon Yariv, Quantum Electronics, Third-Order Optical Nonlinearities-Stimulated Raman and Brillouin Scattering, Chapter 18, pp. 453-475, (1989).
M.C. Larson and J.S. Harris, Jr., Broadly-Turnable Resonant-Cavity Light-Emitting Diode, IEEE Photons, Letters, 1995, pp. 1267-1269.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Supports incorporating vertical cavity emitting lasers and track does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Supports incorporating vertical cavity emitting lasers and track, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supports incorporating vertical cavity emitting lasers and track will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-662289

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.