Method for rendering refractory sulfide ores more susceptible to

Specialized metallurgical processes – compositions for use therei – Processes – Free metal or alloy reductant contains magnesium

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

423DIG17, B01D 5300

Patent

active

054317177

ABSTRACT:
A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometullurgically treating the bioleached ore to recover the precious metal values. If sufficient quantity of precious metal values are contained in the separated clays and fines, these materials can be further processed to recover the precious metal values contained therein.

REFERENCES:
patent: 588476 (1897-08-01), Rhodes
patent: 3777004 (1973-12-01), Lankenau et al.
patent: 3819797 (1974-06-01), Spedden et al.
patent: 3949051 (1976-04-01), Pawlek
patent: 4017309 (1977-04-01), Johnson
patent: 4056261 (1977-11-01), Darrah
patent: 4256705 (1981-03-01), Heinen et al.
patent: 4256706 (1981-03-01), Heinen et al.
patent: 4279868 (1981-07-01), Von Kohorn
patent: 4301121 (1981-11-01), Von Kohorn
patent: 4318892 (1982-03-01), Von Kohorn
patent: 4324764 (1982-04-01), Hasegawa et al.
patent: 4343773 (1982-08-01), Miller et al.
patent: 4374097 (1983-02-01), Holland
patent: 4402831 (1983-09-01), Beardsmore et al.
patent: 4424194 (1984-01-01), Hughes
patent: 4526615 (1985-07-01), Johnson
patent: 4557905 (1985-12-01), Sherman et al.
patent: 4571387 (1986-02-01), Bruynesteyn et al.
patent: 4585548 (1986-04-01), Cadzow
patent: 4690894 (1987-09-01), Brierley et al.
patent: 4721526 (1988-01-01), Elmore et al.
patent: 4729788 (1988-03-01), Hutchins et al.
patent: 4740243 (1988-04-01), Krebs-Yuill et al.
patent: 4752332 (1988-06-01), Wu et al.
patent: 4778519 (1988-10-01), Pesic
patent: 4789481 (1988-12-01), Brierley et al.
patent: 5127942 (1992-07-01), Brierley et al.
patent: 5162105 (1992-11-01), Kleid et al.
patent: 5196052 (1993-03-01), Gross
patent: 5232676 (1993-08-01), Wolff
patent: 5236677 (1993-08-01), Torres-Cardona
patent: 5244493 (1993-09-01), Brierley
patent: 5246486 (1993-09-01), Brierly et al.
Torma, A., Mineral Bioprocessing, Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Africa, pp. 1.1-1.10.
Henley, K. J., et al., The Mineralogy of Refractory Gold Ores, Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Africa, pp. 5.1-5.13.
Ritchie, A. I. M. et al., Optimisation of Oxidation Rates in Dump Oxidation of Pyrite-Gold Ores, Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Africa, pp. 9.1-9.8.
Kelley, B. C. et al., Bioremediation--Applications to Waste Processing in the Mining Industry, Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Africa, pp. 10.1-10.10.
Fraser, G. M., Mixing and Oxygen Transfer in Mineral Bioleaching, Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Africa, pp. 16.1-16.11.
Nicholson, H., et al., Selection of a Refractory Gold Treatment Process for the Sansu Project, Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Aafrica, pp. 20.1-20.11.
Untung, S. R., et al., Application of Bio-Leaching to Some Indonesian Sulphide Ores (A Preliminary Study), Biomine '93 Conference, Mar. 22-23, 1993, Adelaide, South Africa, pp. 11.1-11.10.
Fraser, K. S. et al., Processing of Refractory Gold Ores, Minerals Engineering, vol. 4, Nos. 7-11, pp. 1029-1041, 1991.
Brierley, C. L., Mineral Bio-Processing: Opportunities in Extractive Metallurgy and Environmental Control, NIST, Nov. 1993, pp. 1-29.
Merson, J., Mining With Microbes, New Scientist, 4, Jan. 1991, pp. 17-19.
Browner, R. E., et al., Studies on the Heap Leaching Characteristics of Western Australian Gold Ores, World Gold (1991).
Mihaylov, B., et al., Gold Recovery from a Low-Grade Ore Employing Biological Pretreatment in Columns, Biohydrometallurgical Technologies, The Minerals, Metals & Materials Society (1993) pp. 499-511.
Brierly, J. A., et al., Biooxidation-Heap Concept For Treatment of Refractory Gold Ore, Biohydrometallurgical Technologies, The Minerals, Metals & Materials Society (1993) pp. 437-448.
Harrington, J. G., et al., Engineering Aspects Of Heap Biooxidation Of Course-Crushed Refractory Gold Ores, Biohydrometallurgical Technologies, The Minerals, Metals & Materials Society (1993) pp. 521-530.
Ahonen, L., et al., Redox Potential-Controlled Bacterial Leaching Of Chalcopyrite Ores, Biohydrometallurgical Technologies, The Minerals, Metals & Materials Society (1993) pp. 571-578.
Pantelis, G., et al., Optimising Oxidation Rates In Heaps Of Pyritic Material, Biohydrometallurgical Technologies, The Minerals, Metals & Materials Society (1993) pp. 731-738.
Mihaylov, B., et al.,Biooxidation of A Sulfide Gold Ore in Columns, Mineral Bioprocessing, The Minerals, Metals & Materials Society (1993) pp. 163-177.
Lizama, H. M., et al., Bacterial Leaching Of Copper And Zinc From A Sulfide Ore By A Mixed Culture Of Thiobacillus Ferrooxidans And Thiobacillus Thiooxidans In Laboratory Scale And Pilot Plant Scale Columns, Biohydrometallurgy (1989) pp. 519-531.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for rendering refractory sulfide ores more susceptible to does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for rendering refractory sulfide ores more susceptible to, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for rendering refractory sulfide ores more susceptible to will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-500534

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.