Methods of evaluating a test agent in a diseased cell model

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of regulating cell metabolism or physiology

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S382000, C435S404000

Reexamination Certificate

active

08062889

ABSTRACT:
The present invention relates to methods of constructing an integrated artificial immune system that comprises appropriate in vitro cellular and tissue constructs or their equivalents to mimic the tissues of the immune system in mammals. The artificial immune system can be used to test the efficacy of vaccine candidates and other materials in vitro and thus, is useful to accelerate vaccine development and testing drug and chemical interactions with the immune system, coupled with disease models to provide a more complete representation of an immune response.

REFERENCES:
patent: 5008116 (1991-04-01), Cahn
patent: 5160490 (1992-11-01), Naughton et al.
patent: 5354686 (1994-10-01), Haberman
patent: 5562910 (1996-10-01), Daynes et al.
patent: 5725856 (1998-03-01), Hudziak et al.
patent: 5739001 (1998-04-01), Brown et al.
patent: 5750329 (1998-05-01), Quinn et al.
patent: 6177282 (2001-01-01), McIntyre
patent: 6274378 (2001-08-01), Steinman et al.
patent: 6479064 (2002-11-01), Atala
patent: 6541225 (2003-04-01), Li
patent: 6835550 (2004-12-01), Estell et al.
patent: 2002/0155108 (2002-10-01), Barbera-Guillem et al.
patent: 2003/0109042 (2003-06-01), Wu et al.
patent: 2003/0147923 (2003-08-01), Klaviniskis
patent: 2003/0199006 (2003-10-01), Britz et al.
patent: 2003/0207287 (2003-11-01), Short
patent: 2004/0009943 (2004-01-01), Semple et al.
patent: 2004/0109876 (2004-06-01), Yamamoto et al.
patent: 2004/0234510 (2004-11-01), Mochitate
patent: 2005/0191743 (2005-09-01), Wu et al.
patent: 2005/0229264 (2005-10-01), Chang et al.
patent: 2005/0282148 (2005-12-01), Warren et al.
patent: 2006/0078540 (2006-04-01), Warren et al.
patent: 2006/0105454 (2006-05-01), Son et al.
patent: 2006/0270029 (2006-11-01), Warren et al.
patent: 2006/0275270 (2006-12-01), Warren et al.
patent: 2007/0015136 (2007-01-01), Sanchez-Schmitz et al.
patent: 2007/0141552 (2007-06-01), Warren et al.
patent: 2007/0154956 (2007-07-01), Warren et al.
patent: 2007/0178076 (2007-08-01), Drake et al.
patent: 2007/0218054 (2007-09-01), Sukumar et al.
patent: 2008/0008653 (2008-01-01), Tew et al.
patent: 2009/0011455 (2009-01-01), Warren et al.
patent: 2009/0104221 (2009-04-01), El Shikh et al.
patent: 2009/0117581 (2009-05-01), Warren et al.
patent: 2010/0159443 (2010-06-01), Warren et al.
patent: 0358506 (1989-09-01), None
patent: 1013668 (2000-06-01), None
patent: 1437147 (2002-09-01), None
patent: 1970444 (2006-12-01), None
patent: 99/12972 (1999-03-01), None
patent: WO 99/15629 (1999-04-01), None
patent: WO 99/43788 (1999-09-01), None
patent: WO 99/49319 (1999-09-01), None
patent: WO 03/041568 (2003-05-01), None
patent: WO 03/050271 (2003-06-01), None
patent: WO 2004/031361 (2004-04-01), None
patent: WO 2004/101773 (2004-11-01), None
patent: 2005/013896 (2005-02-01), None
patent: 2005/072088 (2005-08-01), None
patent: WO 2005/104755 (2005-11-01), None
patent: WO 2007/075979 (2007-07-01), None
patent: 2007/108835 (2007-09-01), None
patent: WO 2007/106559 (2007-09-01), None
patent: WO 2007/146267 (2007-12-01), None
Ansel, et al., “A Chemokine-Driven Positive Feedback Loop Organizes Lymphoid Follicles”, Nature, vol. 406, pp. 309-314 (2000).
Aydar et al. (2005)J. Immunol. 174, 5358-5366.
Badylak, S.F. et al., “Small Intestinal Submucosa: A Substrate for in vitro Cell Growth,” J. Biomater. Sci. Polymer Edn. (1998), vol. 9, No. 8, pp. 863-878.
Bai et al., “Generation of Dendritic Cells From Human Bone Marrow Mononuclear Cells: Advantages From Clinical Applications in Comparison to Peripheral Blood Monocyte Derived Cells,” International Journal of Oncology, (2002), 20(2), pp. 247-253.
Banchereau, et al., “Dendritic Cells and the Control of Immunity”, Nature, vol. 392, pp. 245-252 (1998).
Banchereau, et al., “Immunobiology of Dendritic Cells”, Annu. Rev. Immunol., vol. 18, pp. 767-811 (2000).
Baumgarth, “A Two-Phase Model of B-Cell Activation”, Immunological Review, vol. 176, pp. 171-180 (2000).
Benbrook et al., “Organotypic cultures represent tumor microenvironment for drug testing,” Drug Discovery Today: Disease Models, 3(2), pp. 143-148 (2005).
Berman, et al., “Roles of Platelet/Endothelial Cell Adhesion Molecule-1 (PECAM-1, CD31) in Natural Killer Cell Transendothelial Migration and Beta 2 Integrin Activation”, The Journal of Immunology, vol. 156, pp. 1515-1524 (1996).
Birkness et al., A Tissue Culture Bilayer Model to Study the Passage of Neisseria Meningitidis,Infection and Immunity, Feb. 1995, p. 402-409, vol. 63, No. 2.
Birkness et al., An in Vitro Tissue Culture Bilayer Model to Examine Early Events in Mycobacterium Tuberculosis Infection,Infection and Immunity, Feb. 1999, p. 653-658, vol. 67, No. 2.
Bogdan, et al., “Fibroblasts as Host Cells in Latent Leishmaniosis”, J. Exp. Med., vol. 191, pp. 2121-2129 (2000).
Boni et al. (2006)Eur. J. Immunol. 36, 3157-3166.
Brandtzaeg, P. et al., “Mucosal B Cells: Phenotypic Characteristics, Transcriptional, Regulation, and Homing Properties,” Immunological Reviews (2005), vol. 206, pp. 32-63.
Bromelow, K. V. et al., “Whole Blood Assay for Assessment of the Mixed Lymphocyte Reaction,” Journal of Immunological Methods, (2001), 247(1-2), pp. 1-8.
Büchele, S. et al., “Presentation of Tetanus Toxoid to Autologous T Cells by Dendritic Cells Generated From Human Blood. Improved Specificity With Dendritic Cells Generated Without Fetal Calf Serum,” Advances in Experimental Medicine and Biology, (1997), vol. 417, pp. 233-237.
Buchler et al. (2003)Vaccine, 21, 877-882.
Butcher, et al., “Lymphocyte Trafficking and Regional Immunity”, Advances in Immunology, vol. 72, pp. 209-253 (1999).
Castro, et al., “Spleen-Derived Stromal Cells. Adhesion Molecules Expression and Lymphocyte Adhesion to Reticular Cells”, Eur. J. Cell. Biol., vol. 74, 321-328 (1997).
Caux et al. (1995)J. Immunol. 155, 5427-5435.
Cayeux et al. (1999)Eur. J. Immunol. 29, 225-234.
Chen, et al., “A Film Tension Theory of Phagocytosis”, Journal of Colloid and Interface Science, vol. 190, pp. 118-133 (1997).
Chou, et al., “The Detection of the HLA-B27 Antigen by Immunomagnetic Separation and Enzyme-Linked Immunosorbent Assay-Comparison with a Flow Cytometric Procedure”, Journal of Immunological Methods, vol. 255, pp. 15-22 (2001).
Clayton et al., Clin. Exp. Immunol., 2003, v.132, p. 174-179.
Crivellato, et al., “Stromal Cell Organisation in the Mouse Lymph Node. A Light and Electron Microscopic Investigation Using the Zinc Iodide-Osmium Technique”, J. Anat., vol. 190, pp. 85-92 (1997).
Cyster, “Chemokines and the Homing of Dendritic Cells to the T Cell Areas of Lymphoid Organs”, J. Exp. Med. vol. 189, No. 3, pp. 447-450 (1999).
Cyster, et al., “Follicular Stromal Cells and Lymphocyte Homing to Follicles”, Immunological Reviews, vol. 176, pp. 181-193 (2000).
D'Amico et al., Blood 92:207-214 (1998).
Danke, et al., “HLA Class II-Restricted CD4+ T Cell Responses Directed Against Influenza Viral Antigens Postinfluenza Vaccination”, The Journal of Immunology, vol. 171, pp. 3163-3169 (2003).
Denkbas, et al., “Magnetic Chotosan Microspheres: Preparation and Characterization”, Reactive & Functional Polymers, vol. 50, pp. 225-232 (2002).
Dubey et al. (2005)J. Clin. Endocrin&Met., 90, 247-255.
Dubois, et al., “Dendritic Cells Enhance Growth and Differentiation of CD40-Activated B Lymphocytes”, J. Exp. Med., vol. 185, pp. 941-951 (1997).
Dubois et al., J. Leukocyte Biology, 1999, v.66, p. 224-230.
Edelman et al, A Cultureal Renaissance: In Vitro Cell Biology Embraces Three-Dimensional Context. Exp Neurol. 2005, vol. 192, pp. 1-6.
El Shikh, M. et al., “Follicular Dendritic Cells Stimulated by Collagen Type I Develop Dendrites and Networks in Vitro,” Cell and Tissue Research, (2007), 329(1), pp. 81-89.
Forster, et al., “CCR7 Coordinates the Primary Immune Response by Establishing Functional Microenviro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of evaluating a test agent in a diseased cell model does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of evaluating a test agent in a diseased cell model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of evaluating a test agent in a diseased cell model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4306713

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.