Opto-electronic membrane probe

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

324754, G01R 31308

Patent

active

055834450

ABSTRACT:
A probe for testing very high frequency circuit chips (34) includes a flexible membrane (12) having test probe contacts (14), arranged to contact pads (32) on the device under test to bias up, drive and load down the circuit under test. Various optically-addressable devices (68,130,202) are mounted on the membrane and either excited or probed by a laser beam (66) to transmit and/or sense very high frequency electrical signals to/from the device under test. The optically-addressable devices are excited or probed by a high bandwidth laser (64,66), and thus very high speed circuits may be driven by contact pads on the probe membrane and probed by a laser beam. Employing an optically transparent membrane (200) having test probe contacts (206,208) for bias, driving and loading a circuit under test, and having an electro-optic polymer layer (102, 202), a probing laser beam (204) may be directed through the membrane and the electro-optic polymer layer to sample an RF field generated by a device (214) under test. Measurement of internal circuit node voltage wave forms in the electro-optic substrate of a device (34, 50) under test may be accomplished by using test probe contacts (14, 55) to bias, drive and load the device under test while transmitting a laser probe beam (46, 76) through the membrane and electro-optic substrate.

REFERENCES:
patent: 4603293 (1986-07-01), Mourou et al.
patent: 4681449 (1987-07-01), Bloom et al.
patent: 4851767 (1989-07-01), Halboot
patent: 4910454 (1990-03-01), Williamson
patent: 5148103 (1992-09-01), Pasiecznik, Jr.
patent: 5164664 (1992-11-01), Soelkner
patent: 5264787 (1993-11-01), Woith et al.
patent: 5272434 (1993-12-01), Meyrueix
patent: 5331275 (1994-07-01), Ozaki
patent: 5357194 (1994-10-01), Ullman et al.
"Analysis of Picosecond Optoelectronic Cross-Correlation Switches", D. J. Moss, et al., Journal of Applied Physics, vol. 54(10), Oct. 1993, pp. 6026-6030.
"A CW 20-Ghz Optoelectronic Source with Phased-Array Applications", D. Butler, Microwave and Optical Technology Letters, vol. 1, No. 4, Jun. 1988, pp. 119-123.
"Optoelectronic Approach to On-Chip Device and Circuit Characterization at Microwave and Millimeter-Wave Frequencies", C. Rauscher, IEEE Transactions on Microwave Theory and Techniques, vol., 39, No. 7, Jul. 1991, pp. 1179-1193.
"Picosecond GaAs-Based Photoconductive Optoelectronic Detectors", F. W. Smith et al., pp. 176-183.
"Electrooptic Sampling in GaAs Integrated Circuits", B. H. Kolner et al., IEEE Journal of Quantum Electronics, vol. QE-22, No. 1, Jan. 1986, pp. 79-93.
"Ultra-High Bandwidth Detachable Optoelectronic Probes", M. Scheuermann et al., OSA Proceedings on Picosecond Electronics and Optoelectronics, Editors Sollner and Bloom, vol. 4, Mar. 8-10, 1989, pp. 22-26.
"Characterization of Microwave Integrated Circuits Using an Optical Phase-Locking and Sampling System", H-L. A. Hung et al., 1991 IEEE MTT-S Digest, 1991, pp. 507-510.
"Comparison of Electro-Optic and Photoconductive Sampling Using a 28-Ghz Monolithic Amlifier", E. Chauchard et al., Picosecond Electronics and Optoelectronics, pp. 52-56.
"On-Wafer Testing of MMIC with Monolithically Integrated Photoconductive Switches", S. L. Huang et al., 1992 IEEE MTT-S Digest, 1992, pp. 661-664.
"Picosecond Optics and Microwave Technology", C. H. Lee, IEEE Transactions on Microwave Theory and Techniques, vol. 38, No. 5, May 1990, pp. 596-607.
"Generation of High-Power Broad-Band Microwave Pulses By Picosecond Optoelectronic Technique", H. A. Sayadian, IEEE Transactions on Microwave Theory and Techniques, vol. 37, No. 1, Jan. 1989, pp. 43-50.
"Electro-optic Probing of Integrated Circuits by Using Poled Polymers", T. Nagatsuma et al., abstract/summary, OSA Annual Meeting, TuBB2, Sep. 22, 1992, p. 79.
"Optimal Performance of an Electro-Optical Sampler", J. Lindemuth, SPIE vol. 793, Ultrafast Lasers Probe Phenomena in Bulk and Microstructure Semiconductors, 1987, pp. 120-124.
"An Automated Laser Prober to Determine VLSI Internal Node Logic States", F. J. Henley et al., 1984 International Test Conference, Paper 17.1, IEEE, 1984, pp. 536-542.
"Electro-optic Sampling Using Injection Lasers", J. M. Wiesenfeld, SPIE vol. 795, Characterization of Very High Speed Semiconductor Devices & Integrated Circuits, 1987, pp. 339-344.
"Measurement of On-Chip Waveforms and Pulse Propagation in Digital GaAs Integrated Circuits by Picosecond Electro-Optic Sampling", X. C. Zhang et al., Electron Letters, vol. 22, Jan. 1986, pp. 264-265.
"Gallium Arsenide Integrated Circuit Testing Using Electrooptic Sampling", K. J. Weingarten, Ultrafast Electronics Laboratory, Stanford University, Dec. 1987.
"Picosecond Optical Sampling of Gallium Arsenide GaAs Integrated Circuits", IEEE Journal of Quantum Mechanics, vol. 24, No. 2, pp. 198-220, Feb. 1988.
"Picosecond Backside Optical Detection of Internal Signals in Flip-Chip Mounted Silicon VLSI Circuits", H. K. Heinrich et al., Microelectronic Engineering, vol. 16, pp. 313-324, Elsevier 1992.
"Novel Approach To Miniature Conductive Sampling of Microwave Circuits", S. L. Huang et al., JFD2 Conference on Laser and Electro-Optics, Anaheim, CA, May 10-15, 1992.
"Organic Patch Sensor for Electro-Optic Measurement of Electrical Signals in Integrated Circuits", Electronics Letters, vol. 27, No. 11, pp. 932-934, May 1991.
"Ultrafast Opto-Electronics", pp. 183-233, W. Kaiser, Ultrashort Laser Pulses and Applications, Springer-Verlag, New York 1988.
"375-GHz-bandwidth photoconductive detector", Appl. Phys. Lett., vol. 59, No. 16, pp. 1984-1986, Oct. 1991.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Opto-electronic membrane probe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Opto-electronic membrane probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Opto-electronic membrane probe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-426251

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.