Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity
Reexamination Certificate
2007-02-13
2007-02-13
Huynh, Andy (Department: 2818)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Tunneling through region of reduced conductivity
C257S032000, C257S035000
Reexamination Certificate
active
10753504
ABSTRACT:
An electrical junction that includes a semiconductor (e.g., C, Ge, or an Si-based semiconductor), a conductor, and an interface layer disposed therebetween. The interface layer is sufficiently thick to depin a Fermi level of the semiconductor, yet sufficiently thin to provide the junction with a specific contact resistance of less than or equal to approximately 1000 Ω-μm2, and in some cases a minimum specific contact resistance.
REFERENCES:
patent: 3590471 (1971-07-01), Lepselter et al.
patent: 3708360 (1973-01-01), Wakefield, Jr. et al.
patent: 3983264 (1976-09-01), Schroen et al.
patent: 4019113 (1977-04-01), Hartman
patent: 4056642 (1977-11-01), Saxena et al.
patent: 4300152 (1981-11-01), Lepselter
patent: 4485550 (1984-12-01), Koeneke et al.
patent: 5021365 (1991-06-01), Kirchner et al.
patent: 5399206 (1995-03-01), de Lyon
patent: 5578848 (1996-11-01), Kwong et al.
patent: 5596218 (1997-01-01), Soleimani et al.
patent: 5612567 (1997-03-01), Baliga
patent: 5663584 (1997-09-01), Welch
patent: 5801398 (1998-09-01), Hebiguchi
patent: 5888891 (1999-03-01), Gould
patent: 5939763 (1999-08-01), Hao et al.
patent: 6037605 (2000-03-01), Yoshimura
patent: 6096590 (2000-08-01), Chan et al.
patent: 6150286 (2000-11-01), Sun et al.
patent: 6198113 (2001-03-01), Grupp et al.
patent: 6207976 (2001-03-01), Takshashi et al.
patent: 6261932 (2001-07-01), Hulfachor
patent: 6291282 (2001-09-01), Wilk et al.
patent: 6291866 (2001-09-01), Wallace et al.
patent: 6291867 (2001-09-01), Wallace et al.
patent: 6303479 (2001-10-01), Snyder
patent: 6326294 (2001-12-01), Jang et al.
patent: 6680224 (2004-01-01), Shin et al.
patent: 2002/0061646 (2002-05-01), Kan et al.
patent: 2003/0132466 (2003-07-01), Shin et al.
patent: 2004/0026687 (2004-02-01), Grupp et al.
patent: 2005/0037557 (2005-02-01), Doczy et al.
patent: 0 295 490 (1988-12-01), None
patent: 0295490 (1988-12-01), None
patent: 0 789 388 (1997-08-01), None
patent: 0789388 (1997-08-01), None
patent: WO 2004/015782 (2004-02-01), None
patent: WO 2004/030104 (2004-04-01), None
Acorn Technologies, Inc., International Search Report, PCT/US2004/042084, Sep. 1, 2005, 8pp.
Sze S.M., Metal- Semiconductor Contacts, Physics of Semiconductor Devices, New York, John Wiley & Sons, US, 1981.
Uemoto, T., Reduction of Ohmic Contact Resistence on N-Type 6H-SIC By Heavy Doping, Japanese Journal of Applied Physics, Tokyo, JP, vol. 34, No. 1A, Part 2.
Sobolewski M A, et al., Properties of Ultrathin Thermal Nitrides in Silicon Schottky Barrier Structures, Applied Physics Letters, American Institute of Physics, NY, col. 54, No. 7.
Porter L.M. et al., A Critical Review od OHMIC and Rectifying Contacts for Silicon Carbide, Materials Sequence and Engineering B., Elsevier Sequoia, Lausanne, CH. vol. 34, No. 2, Nov. 1995.
Martel R et al, Ambipolae Single-Wall Carbon Nanotube Transistors and Inverters, AIP Conference Proceedings, American Institute of Physics, NY, NY, No. 591, Mar. 9, 2001.
Aberle, Armin G., et al., “Injection-Level Dependent Surface Recombination Velocities at The Silicon-Plasma Silicon Nitrite Interface”,Institut fur Solaernergieforschung, ISFH, D-3 1860 Emmerthal, Germany, (Mar. 9, 1995), pp. 2828-2830.
B. J. Zhang, et al., “Schottky Diodes of Ni/Au on n-GaN Grown on Sapphire and SiC Substrates”,Applied Physics Letters, vol. 79, No. 16, (Oct. 15, 2001), pp. 2567-2569.
B.R. Weinberger, et al., “Surface Chemistry of HF Passivation Silicon: X-Ray Photoelectron And Lon Scattering Spectroscopy Results”,J. Appl. Phys. 60(9), (11/186), pp. 3232-3234.
Blosse, A., et al., “A Novel Low Cost 65nm CMOS Process Architecture With Self Aligned Isolation and W Cladded Source/Drain”,IEEE, Transactions of 2004 International Electron Device Meeting, pp. 669-672.
C.L. Chen, et al., “High Quality Native-Oxide-Free Untrathin Oxide Grown by In-Situ HF-Vapor Treatment”,Electronic Letters, vol. 36, No. 11, (May 25, 2000), pp. 981-983.
Chung-Kuang, Huang, et al., “Two-Dimensional Numerical Simulation of Schottky Barrier MOSFET with Channel Length to 10 nn”,IEEE, pp. 842-848.
Connelly, Daniel, et al., “Optimizing Schottky S/D Offset for 25-nm Dual-Gate CMOS Performance”,IEEE Trans. Electron Devices, vol. 47 No. 5, (2003), pp. 1028-1034.
D. J. Chadi, et al., “Fermi-Level-Pinning Defects in Highly n-Doped Silicon”,Physical Review Letters, vol. 79, No. 24,Nec Research Institute, Princeton New Jersey 08540-6634, (Dec. 1997), pp. 4834-4837.
E. Yablonovitch, et al., “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces”,Physical Review Letters, vol. 57, No. 2, (Jul. 14, 1986), pp. 249-252.
Edelstein, D., et al., “Full Copper Wiring in a Sub-0.25 mm CMOS ULSI Technology”,Proceedings of the IEEE International Electron Device Meeting, (Dec. 1997), pp. 773-776.
F. A. Padovani, “Forward Voltage-Current Characteristics of Metal-Silicon Schottky Barriers”,Texas Instruments, Inc., Dallas Texas, (Sep. 15, 1966), pp. 892-892.
G.B. Akers, et al., “Effects of Thermal Stability and Roughness on Electrical Properties of Tantalus Oxide Gates”,Mat. Res., Soc. Symp. Proc., vol. 567,Materials Research Society, (1999), pp. 391-395.
Gopalakrishnan, Kailash, et al., “Impact Ionization MOS (I-MOS)-Part I: Device and Circuit Simulations”,IEEE Transactions Electron Devices, vol. 52, No. 1, (2005), pp. 69-76.
Hasegawa, Hideki, et al., “Upinning of Fermi Level in Nanometer-Sized Schottky Contacts on GaAs and InP”,Research Center For Interface Quantum Electronics And Graduate School of Electronics And Info. Eng, Hokkaido Univ, Japan, (2000), pp. 92-96.
Heine, Vokker, “Theory of Surface State”,Physical Review Letters, vol. 138, No. 6A,Tell Telephone Lab., Murphy Jill, New Jersey, (Jun. 4, 1965).
Huang, Feng-Jung, “Metal-Oxide Semiconductor Field-Effect Transistors Using Schottky Barrier Drains”,Electronics Letters, vol. 33, No. 15, (Jul. 17, 1997), pp. 1341-1342.
I. Shalish, et al., “Yellow Luminescence And Fermi Level Pinning in GaN Layers”,American Institute of Physics, vol. 77, No. 7, (Aug. 14, 2000), pp. 987-989.
INTERNET, htt:p://www.rciqu.hokudai.ac.ip/RCIQEold/ReseaciAcioeve,emts/it,downloaded on, (Apr. 12, 2002).
Izumi, Hirot, et al., “43 Hydrogen Termination: The Ideally Finished Silicon Surface”,Ultraclean Surface Processing of Silicon Wafers: Secrets of Vlsi Manufacturinghttp://halloftechnology.com/electrical—optical/986.shtml, (Nov. 1998).
J. Hilsenbeck, et al., “Aging Behavior of Algan HFETs With Advanced Ohmic And Schottky Contacts”,Electronic letters, vol. 36, No. 11, (May 25, 2000), pp. 980-981.
J. Tersoff, “Schottky Barrier Heightsand The Continuum of Gap States”,Physical Review Letters, vol. 52, No. 6,AT&T Bell Lab., Murphy Jill, New Jersey 07974, (Feb. 6, 1984).
J.R. Patel, et al., “Arsenic Atom Location on Passive Silicon (111) Surfaces”,Physical Review B. vol. 36, No. 14, (Nov. 15, 1987), pp. 7715-7717.
K. Nauka, et al., “Surface Photovoltage Measurement of Hydrogen-Tteated Si Surfaces”,Journal of Electrochemical Society 146(1), (1999),pp. 292-295.
Kamiyama, Satoshi, et al., “Ultrathin Tantalum Odise Capacitor DIELECTRIC Layers Fabricated Using Rapid Thermal Nitridation Prior to Low Pressure Chemical Vapor Deposition”,j. Electrochem Soc., vol. 140, No. 6,The Electrochemical Society, Inc., (Jun. 6, 1993), pp. 1617.
Kedzierski, Jakub, et al., “Extension and Source/Drain Design for High-Performance FinFET Devices”,IEEE Trans. Electron Devices, vol. 50, No. 4, (Apr. 2003), pp. 952-958.
Kinura, Mitsuteru, et al., “A New Type of Schottky Tunnel Transistor”,IEEE Electron Device Letters, vol. 15, No. 10, (Oct. 1994), pp. 412-414.
L. Cai, et al., “Investigation of The Properties of Plasma-Enhanced Chemical Vapor Deposition Silicon Nitrite And its Effect on Silicon Surface Passivation”,Jou
Connelly Daniel J.
Grupp Daniel E.
Acorn Technologies, Inc.
Huynh Andy
Nguyen Thinh T
Sonnenschein Nath & Rosenthal LLP
LandOfFree
Method for depinning the Fermi level of a semiconductor at... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for depinning the Fermi level of a semiconductor at..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for depinning the Fermi level of a semiconductor at... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3868762