Cancerous disease modifying antibodies

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S387300, C530S388800, C530S391300, C530S391700, C424S133100, C424S141100, C424S155100, C424S183100, C435S007230, C435S069600, C435S070210

Reexamination Certificate

active

10891866

ABSTRACT:
The present invention relates to a method for producing patient cancerous disease modifying antibodies using a novel paradigm of screening. By segregating the anti-cancer antibodies using cancer cell cytotoxicity as an end point, the process makes possible the production of anti-cancer antibodies for therapeutic and diagnostic purposes. The antibodies can be used in aid of staging and diagnosis of a cancer, and can be used to treat primary tumors and tumor metastases. The anti-cancer antibodies can be conjugated to toxins, enzymes, radioactive compounds, and hematogenous cells.

REFERENCES:
patent: 4861581 (1989-08-01), Epstein et al.
patent: 5171665 (1992-12-01), Hellstrom et al.
patent: 5484596 (1996-01-01), Hanna, Jr. et al.
patent: 5693763 (1997-12-01), Codington et al.
patent: 5750102 (1998-05-01), Eisenbach et al.
patent: 5780033 (1998-07-01), Torchilin et al.
patent: 5783186 (1998-07-01), Arakawa et al.
patent: 5849876 (1998-12-01), Linsley et al.
patent: 5869045 (1999-02-01), Hellstrom et al.
patent: 5869268 (1999-02-01), Kudo et al.
Campbell et al. Biology, 5th ed. p. 856, 1999.
Co et al. Nature, 351(6):501-502, Jun. 6, 1991.
Presta et al. Biochemical Society Transactions, 30(4):487-490, 2002.
T. Karpanen et al, “Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth”, Cancer Research, 61:1786-1790 (Mar. 2001).
W. Waud et al, “Characterization of in vivo mammary and prostate tumor xenograft models for growth and response to clinical anticancer agents”, Contrib Oncol Basel Karger, 54:305-315 (1999).
G. Klement et al, “Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts”, Clinical Cancer Research, 8:221-232 (Jan. 2002).
D. Blakey et al, “Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models”, Clinical Cancer Research, 8:1974-1983 (Jun. 2002).
Z. Xiao et al, “Generation of a baculovirus recombinant prostate-specific membrane antigen and its use in the development of a novel protein biochip quantitative immunoassay”, Protein Expresion and Purification, 19:12-21 (2000).
S. Guichard et al, “Schedule-dependent activity of topotecan in OVCAR-3 ovarian carcinoma xenograft: pharmacokinetic and pharmacodynamic evaluation”, Clinical Cancer Research, 7:3222-3228 (Oct. 2001).
V. Von Gruenigen et al, “Efficacy of intraperitoneal adenovirus-mediated p53 gene therapy in ovarian cancer”, Int. J. Gynecol. Cancer, 9:365-372 (1999).
N. Guilbaud et al, “Marked antitumor activity of a new potent acronycine derivative in orthotopic models of human solid tumors”, Clinical Cancer Research, 7:2573-2580 (Aug. 2001).
K. Olson et al, “Inhibition of prostate carcinoma establishment and metastatic growth in mice by an antiangiogenin monoclonal antibody”. Int. J. Cancer, 98:923-929 (2002).
S. Hirschfeld et al, “Oncology drug development: United States Food and Drug Administration perspective”, Critical Reviews in Oncology/Hematology, 42:137-143 (2002).
P. Therasse et al, “New guidelines to evaluate the response to treatment in solid tumors”, Journal of the National Cancer Institute, 92(3):205-216 (Feb. 2000).
G. Eckhardt et al, “Developmental therapeutics: successes and failures of clinical trial designs of targeted compounds”, in American Society of Clinical Oncology, pp. 209-219 (2003).
P. Smith et al, “Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice”, The Prostate, 48:47-53 (2001).
M. Chatterjee et al, “Idiotypic antibody immunotherapy of cancer”, Cancer Immunol Immunother, 38:75-82 (1994).
R. Jain, “Barriers to drug delivery in solid tumors”, Scientific American, 271(1):58-65 (Jul. 1994).
L. Presta et al, “Engineering therapeutic antibodies for improved function”, Biochemical Society Transactions, 30(4):487-490 (2002).
S. Shak, “Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer”, Seminars in Oncology, 26(4 Suppl 12):71-77 (Aug. 1999).
S. Seaver, “Monoclonal antibodies in industry: more difficult than originally thought”, Genetic Engineering News, 14(14):pp. 10 and 21 (1994).
L. Weiner, “An overview of monoclonal antibody therapy of cancer”, Seminars in Oncology, 26(4 Suppl 12):41-50 (Aug. 1999).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cancerous disease modifying antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cancerous disease modifying antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cancerous disease modifying antibodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3744442

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.