High repetition rate laser produced plasma EUV light source

Radiant energy – Radiant energy generation and sources – With radiation modifying member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S493100, C378S119000

Reexamination Certificate

active

07087914

ABSTRACT:
An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.

REFERENCES:
patent: 2759106 (1956-08-01), Wolter
patent: 3150483 (1964-09-01), Mayfield et al.
patent: 3232046 (1966-02-01), Meyer
patent: 3279176 (1966-10-01), Boden
patent: 3746870 (1973-07-01), Demarest
patent: 3960473 (1976-06-01), Harris
patent: 3961197 (1976-06-01), Dawson
patent: 3969628 (1976-07-01), Roberts et al.
patent: 4042848 (1977-08-01), Lee
patent: 4088966 (1978-05-01), Samis
patent: 4143275 (1979-03-01), Mallozzi et al.
patent: 4162160 (1979-07-01), Witter
patent: 4203393 (1980-05-01), Giardini
patent: 4504964 (1985-03-01), Cartz et al.
patent: 4536884 (1985-08-01), Weiss et al.
patent: 4538291 (1985-08-01), Iwamatsu
patent: 4596030 (1986-06-01), Herziger et al.
patent: 4618971 (1986-10-01), Weiss et al.
patent: 4626193 (1986-12-01), Gann
patent: 4633492 (1986-12-01), Weiss et al.
patent: 4635282 (1987-01-01), Okada et al.
patent: 4751723 (1988-06-01), Gupta et al.
patent: 4752946 (1988-06-01), Gupta et al.
patent: 4837794 (1989-06-01), Riordan et al.
patent: 5023897 (1991-06-01), Neff et al.
patent: 5027076 (1991-06-01), Horsley et al.
patent: 5102776 (1992-04-01), Hammer et al.
patent: 5126638 (1992-06-01), Dethlefsen
patent: 5142166 (1992-08-01), Birx
patent: 5313481 (1994-05-01), Cook et al.
patent: 5411224 (1995-05-01), Dearman et al.
patent: 5448580 (1995-09-01), Birx et al.
patent: 5504795 (1996-04-01), McGeoch
patent: 5729562 (1998-03-01), Birx et al.
patent: 5763930 (1998-06-01), Partlo
patent: 5866871 (1999-02-01), Birx
patent: 5936988 (1999-08-01), Partlo et al.
patent: 5963616 (1999-10-01), Silfvast et al.
patent: 6031241 (2000-02-01), Silfvast et al.
patent: 6039850 (2000-03-01), Schulz
patent: 6051841 (2000-04-01), Partlo
patent: 6064072 (2000-05-01), Partlo et al.
patent: 6172324 (2001-01-01), Birx
patent: 6195272 (2001-02-01), Pascente
patent: 6452199 (2002-09-01), Partlo et al.
patent: 6566667 (2003-05-01), Partlo et al.
patent: 6566668 (2003-05-01), Rauch et al.
patent: 6576912 (2003-06-01), Visser et al.
patent: 6586757 (2003-07-01), Melnychuk et al.
patent: 6946669 (2005-09-01), Kleinschmidt
patent: 2001/0055364 (2001-12-01), Kandaka et al.
patent: 2002/0100882 (2002-08-01), Partlo et al.
patent: 2002/0163313 (2002-11-01), Ness et al.
patent: 2002/0168049 (2002-11-01), Schriever et al.
patent: 2003/0006383 (2003-01-01), Melynchuk et al.
patent: 2003/0068012 (2003-04-01), Ahmad et al.
patent: 2003/0219056 (2003-11-01), Yager et al.
Andreev, et al., “Enhancement of laser/EUV conversion by shaped laser pulse interacting with Li-containted targets for EUV lithography”, Proc. Of SPIE, 5196:128-136, (2004).
Apruzese, J.P., “X-Ray Laser Research Using Z Pinches,”Am. Inst. of Phys.399-403, (1994).
Bollanti, et al., “Compact Three Electrodes Excimer Laser IANUS for a POPA Optical System,”SPIE Proc.(2206)144-153, (1994).
Bollanti, et al., “Ianus, the three-electrode excimer laser,”App. Phys. B(Lasers&Optics) 66(4):401-406, (1998).
Choi, et al., “A 1013A/s High Energy Density Micro Discharge Radiation Source,”B. Radiation Characteristics, p. 287-290.
Choi, et al., “Fast pulsed hollow cathode capillary discharge device,”Rev. of Sci. Instrum.69(9):3118-3122 (1998).
Fomenkov, et al., “Characterization of a 13.5nm Source for EUV Lithography based on a Dense Plasma Focus and Lithium Emission.” Sematech Intl. Workshop on EUV Lithography (Oct. 1999).
Hansson, et al., “Xenon liquid jet laser-plasma source for EUV lithography,” Emerging Lithographic Technologies IV,Proc. Of SPIE, vol. 3997:729-732 (2000).
Kato, Yasuo, “Electrode Lifetimes in a Plasma Focus Soft X-Ray Source,”J. Appl. Phys.(33) Pt. 1, No. 8:4742-4744 (1991).
Kato, et al., “Plasma focus x-ray source for lithography,”Am. Vac. Sci. Tech. B., 6(1): 195-198 (1988).
Lebert, et al., “Soft x-ray emission of laser-produced plasmas using a low-debris cryogenic nitrogen target,”J. App. Phys., 84(6):3419-3421 (1998).
Lebert, et al., “A gas discharge based radiation source for EUV-lithography,” Intl. Conf. Micro and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven, Belgium.
Lebert, et al., “Investigation of pinch plasmas with plasma parameters promising ASE,” Inst. Phys. Conf. Ser No. 125: Section 9, pp. 411-415 (1992) Schiersee, Germany.
Lebert, et al., “Comparison of laser produced and gas discharge based EUV sources for different applications,” Intl. Conf. Micro- and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven, Belgium.
Lee, Ja H., “Production of dense plasmas in hypocyloidal pinch apparatus,”The Phys. Of Fluids, 20(2):313-321 (1977).
Lewis, Ciaran L.S., “Status of Collision-Pumped X-ray Lasers,”Am Inst. Phys.pp. 9-16 (1994).
Malmqvist, et al., “Liquid-jet target for laser-plasma soft x-ray generation,”Am. Inst. Phys.67(12):4150-4153 1996).
Mather, et al., “Stability of the Dense Plasma Focus,”Phys. Of Fluids, 12(11):2343-2347 (1969).
Mayo, et al., “A magnetized coaxial source facility for the generation of energetic plasma flows,”Sci. Technol.vol. 4:pp. 47-55 (1994).
Mayo, et al., “Initial Results on high enthalpy plasma generation in a magnetized coaxial source,”Fusion Techvol. 26:1221-1225 (1994).
Nilsen, et al., “Analysis of resonantly photopumped Na-Ne x-ray-laser scheme,”Am Phys. Soc.44(7):4591-4597 (1991).
Orme, et al., “Electrostatic charging and deflection of nonconventional droplet streams formed from capillary stream breakup,”Physics of Fluids, 12(9):2224-2235, (Sep. 2000).
Orme, et al., “Charged Molten Metal Droplet Deposition As a Direct Write Technology”, MRS 2000 Spring Meeting, San Franc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High repetition rate laser produced plasma EUV light source does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High repetition rate laser produced plasma EUV light source, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High repetition rate laser produced plasma EUV light source will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3684632

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.