Sublithographic nanoscale memory architecture

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257SE51040, C257SE51023, C977S726000

Reexamination Certificate

active

06963077

ABSTRACT:
A memory array comprising nanoscale wires is disclosed. The nanoscale wires are addressed by means of controllable regions axially and/or radially distributed along the nanoscale wires. In a one-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires and microscale wires. In a two-dimensional embodiment, memory locations are defined by crossing points between perpendicular nanoscale wires. In a three-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires located in different vertical layers.

REFERENCES:
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6256767 (2001-07-01), Kuekes et al.
patent: 6314019 (2001-11-01), Kuekes et al.
patent: 6383784 (2002-05-01), Smith
patent: 2002/0027819 (2002-03-01), Tomanek et al.
patent: 2002/0175390 (2002-11-01), Goldstein et al.
patent: 2003/0089899 (2003-05-01), Lieber et al.
patent: 2003/0200521 (2003-10-01), DeHon et al.
patent: 2003/0206436 (2003-11-01), Eaton et al.
patent: 2004/0113138 (2004-06-01), DeHon et al.
patent: 02/103753 (2002-12-01), None
patent: 03/063208 (2003-07-01), None
patent: 2004/034467 (2004-04-01), None
patent: 2004/061859 (2004-07-01), None
U.S. Appl. No. 10/853,907, filed May 25, 2004, DeHon et al.
U.S. Appl. No. 10/856,115, filed May 28,2004, DeHon et al.
U.S. Appl No. 10/925,863, filed Aug. 24, 2004 DeHon et al.
Albrecht, O., et al., “Construction and Use of LB Deposition Machines for Pilot Production,”Thin Solid Films, vol. 284-285, pp. 152-156 (Sep. 15,1996).
Björk, M.T., et al., “One-Dimensional Steeplechace for Electrons Realized,”Nano Letters, vol. 2, No. 2, pp. 87-89 (2002).
Brown, C.L., et al., “Introduction of (2) Catenanes Into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials,”Langmuir, vol. 16, No. 4, pp. 1924-1930 (2000).
Chen, Y., et al., “Nanoscale Molecular-Switch Crossbar Circuits,”Institute of Physics Publishing, Nanotechnology 14, pp. 462-468 (2003).
Chen, Y., et al., “Self-Assembled Growth of Epitaxial Erbium Disilicide Nanowires on Silicon (001),”Applied Physics Letters, vol. 76, No. 2, pp. 4004-4006 (Jun. 26, 2000).
Chou, S. Y., “Sub-10 nm Imprint Lithography and Applications,”J. Vac. Sci. Technol. B, vol. 15, No. 6, pp. 2897-2904 (Nov./Dec. 1997).
Collier, C.P., et al., “A (2) Catenane-Based Solid State Electronically Reconfigurable Switch,”Science, vol. 289, pp. 1172-1175 (Aug. 18,2000).
Collier, C.P., et al., “Electronically Configurable Molecular-Based Logic Gates,” Science, vol. 285, pp. 391-394 (Jul. 16, 1999).
Cui, Y., et al., “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,”Applied Physics Letters, vol. 78, No. 15, pp. 2214-2216 (Apr. 9, 2001).
Cui, Y., et al., “Doping and Electrical Transport in Silicon Nanowires,”The Journal of Physical Chemistry, vol. 104, No. 22, pp. 5213-5216 (Jun. 8, 2000).
Cui, Y., et al., “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,”Science, vol. 291, pp. 851-853 (Feb. 2, 2001).
Dekker, C., “Carbon Nanotubes As Molecular Quantum Wires,”Physics Today, pp. 22-28 (May 1999).
Derycke, V., et al., “Carbon Nanotube Inter- and Intramolecular Logic Gates,”Nano Letters, vol. 1, No. 9, pp. 453-456 (Sep. 2001).
Goldstein, S.C., et al., “NanoFabrics: Spatial Computing Using Molecular Electronics,”Proc. Of The 28th Annual International Symposium on Computer Architecture, pp. 1-12 (Jun. 2001).
Gudiksen, M.S., et al., “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,”Nature, vol. 415, pp. 617-620 (Feb. 7, 2002).
Huang, Y., et al., “Directed Assembly of One-Dimensional Nanostructures Into Functional Networks,”Science, vol. 291, pp. 630-633 (Jan. 26, 2001).
Huang, Y., et al., “Logic Gates and Computation From Assembled Nanowire Building Blocks,”Science, vol. 294, pp. 1313-1317 (Nov. 9, 2001).
Lauhon, L.J., et al., “Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures,”Nature, vol. 420, pp. 57-61 (Nov. 7, 2002).
Lieber, C.M., “Nanowire Superlattices,”Nano Letters, vol. 2; No. 2, pp. 81-82 (Feb. 2002).
Morales, A.M., et al., “A Laser Ablation Method for the Sythesis of Crystalline Semiconductor Nanowires,”Science, vol. 279, pp. 208-211 (Jan. 9, 1998).
Tans, S.J., et al., “Room-Temperature Transitor Based On A Single Carbon Nanotube,”Nature, vol. 393, pp. 49-52 (May 7, 1998).
Ulman, A., “Part Two: Langmuir-Blodgett Films,”An Introduction to Ultrathin Organic Films, Section 2.1, pp. 101-132 (1991).
Whang, D., et al., “Nanolithography Using Hierarchically Assembled Nanowire Masks,”Nano Letters, vol. 3, No. 7, pp. 951-954 (2003).
Wu, Y., et al., “Block-by-Block Growth of Single-Crystaline Si/SiGe Superlattice Nanowires,”Nano Letters, vol. 2, No. 2, pp. 83-86 (2002).
DeHon, A., “Array-Based Architecture for Fet-Based, Nanoscale Electronics,”IEEE Transactions on Nanotechnology, vol. 2, No. 1, pp. 23-32 (Mar. 2003).
U.S. Appl. No. 10/853,907, filed May 5, 2004, DeHon et al.
U.S. Appl. No. 10/856,115, filed May 28, 2004, DeHon et al.
U.S. Appl. No.10/925,863, Aug. 24, 2004, DeHon et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sublithographic nanoscale memory architecture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sublithographic nanoscale memory architecture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sublithographic nanoscale memory architecture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3495673

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.