Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction
Reexamination Certificate
2005-11-01
2005-11-01
Loke, Steven (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Heterojunction
C257S031000
Reexamination Certificate
active
06960780
ABSTRACT:
A circuit comprising a superconducting qubit and a resonant control system that is characterized by a resonant frequency. The resonant frequency of the control system is a function of a bias current. The circuit further includes a superconducting mechanism having a capacitance or inductance. The superconducting mechanism coherently couples the superconducting qubit to the resonant control system. A method for entangling a quantum state of a first qubit with the quantum state of a second qubit. In the method, a resonant control system, which is capacitively coupled to the first and second qubit, is tuned to a first frequency that corresponds to the energy differential between the lowest two potential energy levels of the first qubit. The resonant control system is then adjusted to a second frequency corresponding to energy differential between the lowest two potential energy levels of the second qubit.
REFERENCES:
patent: 5917322 (1999-06-01), Gershenfeld et al.
patent: 6128764 (2000-10-01), Gottesman
patent: 6317766 (2001-11-01), Grover
patent: 6459097 (2002-10-01), Zagoskin
patent: 6504172 (2003-01-01), Zagoskin et al.
patent: 6563311 (2003-05-01), Zagoskin
patent: 6605822 (2003-08-01), Blais et al.
patent: 6614047 (2003-09-01), Tzalenchuk et al.
patent: 6670630 (2003-12-01), Blais et al.
patent: 2002/0188578 (2002-12-01), Amin et al.
patent: 2003/0193097 (2003-10-01), Il'chev et al.
patent: 2003/0224944 (2003-12-01), Il'chev et al.
patent: 2004/0012407 (2004-01-01), Amin et al.
patent: 2004/0016918 (2004-01-01), Amin et al.
Bocko, M. “Prospects for Quantum Coherent Computation Using Superconducting Electronics,” IEEE Transactions on Applied Superconductivity, vol. 7, No. 2, Jun. 1997, 3638-3641.
Ettinger, K., et al., “An Integrated 20 GHz SiGe Bipolar Differential Oscillator with High Tuning Range,” Proceedings of the 2000 Bipolar/BICMOS Circuits and Technology Meeting (Cat. No. 00CH37124) IEEE Piscataway, NJ, USA, Sep. 24, 2000, pp. 161-163, ISBN 0-7803-6381-1.
Makhlin, Y. et al., “Nano-electronic circuits as quantum bits,” ISCAS 2000, IEEE International Symposium on Circuits and Systems, Geneva, vol. 2, May. 28, 2000, pp. 241-244.
U.S. Appl. No. 10/798,737, Mar. 10, 2004, Blais et al.
U.S. Appl. No. 10/801,335, Mar. 15, 2004, Blais et al.
U.S. Appl. No. 60/341,974, Dec. 18, 2001, Il'Chev et al.
U.S. Appl. No. 60/349,663, Jan. 15, 2002, Amin et al.
U.S. Appl. 60/372,958, Apr. 15, 2002, Il'chev et al.
U.S. Appl. No. 60/556,778, Mar. 26, 2004, Hilton et al.
U.S. Appl. No. 60/557,747, Mar. 29, 2004, Amin et al.
U.S. Appl. No. 60/557,750, Mar. 29, 2004, et al.
W.A. Al-Saidi and D. Stroud, “Eigenstates of a small Josephson junction coupled to a resonant cavity”, Physical Review B, 65, pp. 014512-1 to 014512-7 (2001).
A.D. Armour, M.P.Blencowe and K.C. Schwab, “Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box”, Physical Review Letters, 88, pp. 148304-1 to 148301-4 (2002).
A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation”, Physical Review A, 52, pp. 3457-3467 (1995).
A. Blais,, “Quantum network optimization”, Physical Review A, 64, pp. 022312-1 to 022312-5 (2001).
G. Blatter, V.B. Geshkenbein, and L. Ioffe, “Design aspects of superconducting-phase quantum bits,” Physical Review B, 63, pp. 174511-1 to 174511-9 (2001).
D. Born, T. Wagner, W. Krech, U. Hubner, and L. Fritzsch, “Fabrication of ultrasmall tunnel junctions by electron beam direct-writing”, IEEE Transactions on Applied Superconductivity, 11, pp. 373-376 (2001).
O. Buisson and F.W.J. Hekking, “Entangled states in a Josephson charge qubit coupled to a superconducting resonator”, ARxIV.ORG:COND-MAT/0008275 (2000), website last accessed on Jun. 4, 2004.
A. Cottet, D. Vion, A. Aassime, P. Joyez, P. Esteve, and M.H. Devoret, “Implementation of a combined charge-phase quantum bit in a superconducting circuit”, Physica C, 367, pp. 197-203.
D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer”, Proceedings of the Royal Society of London A, 400, pp. 97-115 (1985).
D.P. DiVincenzo, “The physical implementation of quantum computation”, arXiv.org:quant-ph/0002077 (2000), website last accessed on Jun. 4, 2004.
Economist, “Quantum Dreams”, pp. 1-3 (Mar. 8, 2001).
R.P. Feynman, “Simulating physics with computers”, International Journal of Theoretical Physics, 21, pp. 467-488 (1982).
J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, and J.E. Lukens, “Quantum superposition of distinct macroscopic states”, Nature, 406, pp. 43-46 (2000).
L.K. Grover, “A fast quantum mechanical algorithm for database search”, Proceedings of the 28th STOC, pp. 212-219 (1996).
S. Han, Y. Yu, X. Chu, S.-I. Chu, and Z. Wang, “Time-resolved measurement of dissipation-induced decoherence in a Josephson junction”, Science, 293, pp. 1457-1459 (2001).
F.W.J. Hekking, O. Buisson, F. Balestro, and M.G. Vergniory, “Cooper Pair Box Coupled To a Current-Biased Josephson Junction”, arXiv.org.cond-mat/0201284 (2002), website last accessed on Jun. 4, 2004.
R. Hu, R. de Sousa, and S. Das Sarma, “Decoherence and dephasing in spin-based solid state quantum computers”, arXiv.org:cond-mat/0108339 (2001), website last accessed on Jun. 4, 2004.
P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M.H. Devoret, “Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor”, Physical Revew Letters, 72, pp. 2458-2462 (1994).
A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A.Fisher, A. Garg, W. Zwerger, “Dynamics of the dissipative two-state system”, Review of Modern Physics, 59, pp. 1-85 (1987).
Yu. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices”, Reviews of Modern Physics, 73, pp. 357-400 (2001).
F. Marquardt and C. Bruder, “Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island”, Physical Reveiw B, 63, pp. 054514-054520 (2001).
J. Martinis, S. Nam, J. Aumentado, and C. Urbina, “Rabi Oscillations in a Large Jospheson-Junction Qubit”, Physical Review Letters, 89, pp. 117901-117904 (2002).
J.E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, and S. Lloyd, “Josephson persistent-current qubit,”Science 285, pp. 1036-1039 (1999).
Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box”, Nature, 398, pp. 786-788 (1999).
T.P. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, and J.J. Mazo, “Superconducting persistent-current qubit”, Physical Review B, 60, pp. 15398-15413 (1999).
F. Plastina and G. Falci, “Communciating Josephson qubits”, arXiv.org:cond-mat/0206586 (2002), website last accessed on Jun. 4, 2004.
P. Shor, “Polynominal-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM Journal of Computing 26, pp. 1484-1499 (1997).
D. Vion, A. Aasime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, “Manipulating the quantum state of an electrical circuit”, Science, 296, pp. 886-889 (2002).
C. H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, and J.E. Mooij, “Quantum superposition of macroscopic persistent-current states”, Science, 290, pp. 773-777 (2000).
Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, “Coherent temporal oscillations of macroscopic quantum states in a Josephson junction”, Science, 296, pp. 889-892 (2002).
W.H. Zurek, “Decoherence and t
Blais Alexandre
Hilton Jeremy P.
Zagoskin Alexandre M.
D-Wave Systems Inc.
Loke Steven
Lovejoy Brett
LandOfFree
Resonant controlled qubit system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Resonant controlled qubit system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resonant controlled qubit system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3482095