Nitride semiconductor device with reduced polarization fields

Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S046000, C438S047000, C438S048000, C438S604000

Reexamination Certificate

active

06849472

ABSTRACT:
A method for fabricating a light-emitting semiconductor device including a III-Nitride quantum well layer includes selecting a facet orientation of the quantum well layer to control a field strength of a piezoelectric field and/or a field strength of a spontaneous electric field in the quantum well layer, and growing the quantum well layer with the selected facet orientation. The facet orientation may be selected to reduce the magnitude of a piezoelectric field and/or the magnitude of a spontaneous electric field, for example. The facet orientation may also be selected to control or reduce the magnitude of the combined piezoelectric and spontaneous electric field strength.

REFERENCES:
patent: 4952792 (1990-08-01), Caridi
patent: 5081519 (1992-01-01), Nishimura
patent: 5561301 (1996-10-01), Inoue
patent: 5602418 (1997-02-01), Imai et al.
patent: 5625202 (1997-04-01), Chai
patent: 5727008 (1998-03-01), Koga
patent: 5742628 (1998-04-01), Fujii
patent: 5880485 (1999-03-01), Marx et al.
patent: 6229151 (2001-05-01), Takeuchi et al.
patent: 0 716 457 (1995-12-01), None
patent: 0 743 727 (1996-05-01), None
patent: 9624167 (1996-02-01), None
patent: 0141224 (2000-11-01), None
patent: WO 0203474 (2002-01-01), None
Sun et al. “Piezoelectric Fields in Strained (In, Ga) As/GaAs Multiple-Quantum well Structures Grown on Vicinal (110) GaAs”, Feb. 1994, IEEE, vol. 30, pp. 466-470.*
H. Amano, N. et al., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer”, Appl. Phys. Lett. 48 (5), Feb. 3, 1986, pp. 353-355.
Shuji Nakamura, “GaN Growth Using GaN Buffer Layer”, Japanese Journal of Applied Physics vol. 30, No. 10A, Oct. 1991, pp. L1705-L1707.
Noriyuki Kuwano et al., “Cross-sectional TEM study of microstructures in MOVPE GaN films grown on α-Al2O3with a buffer layer of AIN”, Journal of Crystal Growth 115 (1191), pp. 381-387.
Dongjin Byun et al., “Optimization of the GaN-buffer growth on 6H-SiC(0001)”, Thin Solid Films 289 (1996), pp. 256-260.
K. Horina et al., “Initial Growth Stage of AlGaN Grown Directly On (0001) 6H-SiC By MOVPE”, Mat. Res. Soc. Symp. Proc. vol. 449 1997 Materials Research Society, pp. 73-78.
Tetsuya Takeuchi et al., “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells”, Jpn. J. Appl. Phys. vol. 36 (1997), pp. L382-L385, Part 2. No. 4A, Apr. 1, 1997.
Tetsuya Takeuchi et al., “Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterstructures and Quantum Wells”, Jpn. J. Appl. Phys. vol. 39 (2000) pp. 413-416, Part 1, No. 2A, Feb. 2000.
K. Horino et al. “Growth of (1100) Oriented GaN on (1100) 6H-SiC by Metalorganic Vapor Phase Epitaxy”, International Symposium on Blue Laser and Light Emitting Diodes, Chiba Univ., Japan, Mar. 5-7, 1996, pp. 530-533.
K. Domen, “Analysis of polarization anisotropy along the c axis in the photoluminescence of wirtzite GaN” Appl. Phys. Lett. 71 (14), Oct. 6, 1997, 3 pp.
Seoung-Hwan Park et al., “Crystal-orientation effects on the peizoelectric field and electronic properties of strained wurtzite semiconductors”, Physical Review B, vol. 59, No. 7, Feb. 15, 1991-I, pp. 4725-4737.
Andreas Hanglieter, “The role of piezoelectric fields in GaN-based quantum wells”, MRS Internet J. Nitride Semicond. Res. 3, 15 (1998) 1998-1999 The Materials Research Society, pp. 1-8.
Fabio Bernardini et al., “Spontaneous polarization and piezoelectric constants of III-V nitrides”, 1997 The American Physical Society, vol. 56, No. 16, Oct. 15, 1997-II, pp. R10 024-R10 027.
Tetsuya Takeuchi et al., “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect”, Applied Physics Letters, vol. 73, No. 12, Sep. 21, 1996, pp 1691-1693.
S.F. Chichibu et al., “Optical properties of InGaN quantum wells”, Materials Science and Engineering B59 (1999), pp. 298-306.
S.F. Chichibu et al., “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures”, Applied Physics Letters, vol. 73, No. 14, Oct. 5, 1998, pp. 2006-2008.
Takashi Mukai, et al., “Current and Temperature Dependences of Electoluminescence of InGaN-Based UV/Blue/Green Light-Emitting Diodes”, Jpn. J. Appl. Phys. vol. 37 (1998), pp. L1358-L1361.
Fabio Della Sala, et al., “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures”, Applied Physics Letters, vol. 74, No. 14, Apr. 5, 1999, pp. 2002-2004.
L.H. Peng, et al., “Piezoelectric effects in the optical properties of strained InGaN quantum wells”, Applied Physics Letters, vol. 74, No. 6, Feb. 8, 1999, pp. 795-797.
W.W. Chow, “Quantum-well width dependence of threshold current density in InGaN lasers”, Applied Physics Letters, vol. 75, No. 2, Jul. 12, 1999, pp. 244-246.
Edited by Shuji Nakamura and Shigefusa F. Chichibu, “Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes”, First published 2000 by Taylor & Francis, 8 pp.
Atsuko Niwa et al., “Valence subband structures of (1010)-GaN/AIGaN strained quantum wells calculated by the tight-binding method”, Appl. Phys. Lett. 70 (16), Apr. 21, 1997, pp. 2159-2161.
Akihiko Ishibashi et al., “Metalorganic Vapor Phase Epitaxy Growth of a High-Quality GaN/InGaN Single Quantum Well Structure Using a Misoriented SiC Substrate”, Jpn. J. Appl. Phys. vol. 36 (1997), pp. 1961-1965.
D.A.B. Miller, D.S. Chemla et al., “Band-Edge Electoabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect” Physical Review Letters, vol. 53, No. 22, Nov. 26, 1984, pp. 2173-2176.
K. Domen et al., “Optical gain for wurtzite GaN with anisotropic strain in c plane”, Appl. Phys. Lett 70 (8), Feb. 24, 1997, pp. 987-989.
D.L. Smith et al., “Piezoelectric effects in strained-layer superlattices”, J. Appl. Phys. 63 (8), Apr. 15, 1998, pp. 2717-2719.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nitride semiconductor device with reduced polarization fields does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nitride semiconductor device with reduced polarization fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nitride semiconductor device with reduced polarization fields will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3451532

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.