Human n-methyl-d-aspartate receptor subunits, nucleic acids...

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007210, C436S501000

Reexamination Certificate

active

06864358

ABSTRACT:
In accordance with the present invention, there are provided nucleic acids encoding human NMDA receptor protein subunits and the proteins encoded thereby. The NMDA receptor, subunits of the invention comprise components of NMDA receptors that have cation-selective channels and bind glutamate and NMDA. In one aspect of the invention, the nucleic acids encode NMDAR1 and KMDAR2 subunits of human NMDA receptors. In a preferred embodiment, the invention nucleic acids encode NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C and NMDAR2D subunits of human NMDA receptors. In addition to being useful for the production of NMDA receptor subunit proteins, these nucleic acids are also useful as probes, thus enabling those skilled in the art, without undue experimentation, to identify and isolate related human receptor subunits. Functional glutamate receptors can be assembled, in accordance with the present invention, from a plurality of one type of NMDA receptor subunit protein (homomeric) or from a mixture of two or more types of subunit proteins (heteromeric). In addition to disclosing novel NMDA receptor protein subunits, the present invention also comprises methods for using such receptor subunits to identify and characterize compounds which affect the function of such receptors, e.g., agonists, antagonists, and modulators of glutamate receptor function. The invention also comprises methods for determining whether unknown protein(s) are functional as NMDA receptor subunits.

REFERENCES:
patent: 4837148 (1989-06-01), Cregg
patent: 4855231 (1989-08-01), Stroman et al.
patent: 4882279 (1989-11-01), Cregg
patent: 4929555 (1990-05-01), Cregg et al.
patent: 5024939 (1991-06-01), Gorman
patent: 5028707 (1991-07-01), Nichols et al.
patent: 5202257 (1993-04-01), Heinemann et al.
patent: 5401629 (1995-03-01), Harpold et al.
patent: 5403484 (1995-04-01), Ladner et al.
patent: 5436128 (1995-07-01), Harpold et al.
patent: 0500278 (1994-06-01), None
patent: 0606734 (1994-07-01), None
patent: 0674003 (1995-09-01), None
patent: 9223769 (1992-11-01), None
patent: 9307026 (1993-04-01), None
patent: 2291647 (1996-01-01), None
patent: 6014783 (1994-01-01), None
patent: 9106648 (1991-05-01), None
patent: 59313423 (1993-07-01), None
patent: 9323536 (1993-11-01), None
patent: 9324629 (1993-12-01), None
patent: 9325679 (1993-12-01), None
patent: 9401094 (1994-01-01), None
patent: 9404898 (1994-03-01), None
patent: 9406428 (1994-03-01), None
patent: 9411501 (1994-05-01), None
patent: 9526401 (1995-10-01), None
George et al., Current Methods in Sequence Comparison,Macromolecular Sequencing and Synthesis Selected Methgods and Applications, Alan R. Liss, Inc., pp. 127-149 (1988).
Grenningloh et al., Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes,The EMBO J.9(3): 771-776 (1990).
Puckett et al., Molecular cloning and chromosomal localization of one of the human glutamate receptor genes,Proc. Natl. Acad. Scu. U.S.A. 88: 7557-7561 (1991).
Schofield et al., Sequence and expression of huyman GABAAα1 and Δ1 subunits,FEBS Lett. 244(2): 361-364 (1989).
Sun et al., Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors,Proc. Natl. Acad. Sci. U.S.A. 89:1443-1447 (1992).
Abbott, NMDA receptor cloned,Trends Pharmacol. Sci.12:449 (1991).
Abbott, NMDA receptor subunit cloned,Trends Pharmacol. Sci.12:334 (1991).
Aba et al., Molecular characterization of a novel metabotropic guitamate receptor mGluR5 coupled to inositol phosphate/Ca2+signal transduction,J. Biol. Chem.267:13361-13368 (1992).
Albin et al., Abnormalities of striatal projection neurons andN-methyl-D-aspattate receptors in presymptomatic Huntington's Diesease,N. Engl. J. Med.322(18):1293-1298 (1990).
Anantharam et al., Combinatorial RNA splicing alters the surface charge on the NMDA receptor,FEBS Lett. 305(1):27-30 (1992).
Bahouth et al., Immunological approaches for probing receptor structure and function,Trends Pharmacol. Sci.12:338-343 (1991).
Barnard, Will the real NMDA receptor please stand up?Trends Pharmacol. Sci.13:11-12 (1992).
Beal, Mechanisms of excitotoxicity in neurologic diseases,FASEB J.6:3338-3344 (1992).
Ben-Ari et al., Protein kinase C modulation of NMDA currents: an important link for LTP induction,Trends Neurosci.15:333-339 (1992).
Black et al., N-methyl-D-aspartate- or glutamate-mediated toxicity in cultured rat cortical rat cortical neurons is antagonized by FPL 15896AR,J. Neurochem. 65:2170-2177 (1995).
Bottaro et al, Identification of the hepatocyte growth factor receptor as the c-metproto-oncogene product,Science251:802-804 (1991).
Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principels of protein-dye binding,Anal. Biochem.72:248 (1976).
Bristow et al., The glycine/NMDA receptor antagonist R-(+)-HA-966, blocks actvation of the mesolimbic dopaminergic system induced by phencyclidine and dizcilpine (MK-801) in rodents,Br. J. Pharmacol.108:1158-1163 (1993).
Choi, Clacium-mediated neurotoxicyt: Relationship to specific channel types and role in ischemica damage,Trends Neurosci.11(10):465469 (1988).
Choi, Glutamate neurotoxicity and diseass of the nervous system,Neuron1:623-634 (1988).
Ciba-Giegy Unveils Research Agreement with SIBIA of U.S.,The Wall Street Journal(Sep. 17, 1992).
Coyle et al., Oxidative stress, glutamate, and neurodegenerative disorders,Science 262:689-695 (1993).
Daggett et al., Cloning and functional characterization of three splice variants of the human NMDAR1 receptor,Biphys. J., 36(2):447 (1994).
Dascal, The use of Xenopus oocytes for the study of ion channels,CRC Critical Reviews in Biochemistry22(4):317-387 (1987).
Donnelly and Pallotta, Single-channel currents from diethylpyrocarbonate-modified NMDA receptors in cultured rat brain cortical neurons,J. Gen. Physol. 105:837-859 (1995).
Durand et al., Cloning of an apparent splice variant of the ratN-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C,Proc. Natl. Acad. Sci. USA 89:9359-9363 (1992).
Egebjerg et al., Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence,Proc. Natl. Acad. Sci. USA 91: 10270-10274 (1994).
Felder et al., A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinistol hydrolysis,J. Biol. Chem. 264:20356-20362 (1989).
Fisher and Aronson, Characterization of the cDNA and genomic sequence of a G protein γ subunit (γs),Mol. Cell. Bio. 12:1585 (1992).
Foldes et al., Cloning and sequence analysis of cDNAs encoding human hippocampusN-methyl-D-aspartate receptor subunits: Evidience for alternative splicing,Gene 131:293-298 (1993).
Gautam et al., A G protein gamma subunit shares homology withresproteins,Science 244:971 (1989).
Gautam et al., G protein diversity is increased by associations with a variety of γ subunits,Proc. Natl. Acad. Sci. USA87:7973 (1990).
Ger-au and Conn, Multiple presynaptic metabotropic glutamata receptors modulate excitatory and inhibtory synaptic transmission in hippocampal area CA1,J. Neurosci 15(10):6879-6889 (1995).
Greenamyre et al., Synaptic localization of striatal NMDA, quisqualate and kainate receptors,Neurosci. Lett. 101:133-137 (1989).
Grimwood et al., Interactions between the glutamate and glycine recognition sites of theN-methyl-D-aspartate receptor form rat brain, as revealed from radioligand binding studies,J. Neurochem. 60:1729-1738 (1993).
Gubler et al., A simple and very efficient method for generating cDNA libraries,Gene 25:263-269 (1983).
Gunasekar et al., NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: Implication of cell death,J. Neurochem. 65:2016-2021 (1995).
Gundersen et al., Glutamate and kainate receptors induced by rat brain messenger RNA inXenopus oocytes, Proc. R. Soc. London Ser. 221:127 (1984).
Hess et al., Cloning, functional expression, and pharmacological characterization of human NMDAR1/NMD

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human n-methyl-d-aspartate receptor subunits, nucleic acids... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human n-methyl-d-aspartate receptor subunits, nucleic acids..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human n-methyl-d-aspartate receptor subunits, nucleic acids... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3421486

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.