Surface emitting semiconductor laser and surface emitting...

Coherent light generators – Particular active media – Semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S027000

Reexamination Certificate

active

06751242

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a surface emitting semiconductor laser which emits laser light in the direction perpendicular to a semiconductor substrate and a surface emitting semiconductor laser array using the surface emitting semiconductor laser.
2. Description of Related Art
A surface emitting semiconductor laser emits laser light in the direction perpendicular to a semiconductor substrate on which a resonator is formed in the perpendicular direction. The resonator causes laser oscillation to occur and emits laser light. The resonator is formed by depositing a reflection layer, an active layer, and a reflection layer, in that order, on the semiconductor substrate.
The surface emitting semiconductor laser has various excellent characteristics. Specifically, the surface emitting semiconductor laser can be easily arrayed (a plurality of lasers are arranged on one semiconductor substrate), has a small threshold, has a stable oscillation wavelength, exhibits an isotropic, small radiation angle in comparison with edge emitting lasers, and the like. Therefore, as a two-dimensionally integratable semiconductor laser, application of the surface emitting semiconductor laser to parallel optical communications, parallel optical arithmetic, laser beam printers, and the like has been expected.
In the case of forming optical devices using a semiconductor laser, devices such as a polarizer or a beam splitter are often used. The reflectivity of the polarizer and beam splitter are dependent on the polarization direction. In the case of using a semiconductor laser assembled into optical devices, if the polarization direction of laser light is insufficiently controlled, problems occur such as changes in the light intensity depending on the polarization direction. Therefore, it is important to control the polarization direction of laser light.
However, since the angle of radiation of laser light emitted from the resonator is isotropic because of the isotropic structure thereof, it is difficult to control the polarization direction of laser light. To deal with this problem, attempts to control the polarization direction of laser light in the surface emitting semiconductor laser has been made. For example, Japanese Patent Applications Laid-open No. 8-116130 and No. 6-224515 disclose technologies for controlling the polarization direction of laser light in the surface emitting semiconductor laser.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a surface emitting semiconductor laser capable of controlling the polarization direction of laser light and a surface emitting semiconductor laser array.
According to the present invention, a surface emitting semiconductor laser in which a resonator is formed on a semiconductor substrate in the perpendicular direction, from which laser light is emitted in the direction perpendicular to the semiconductor substrate, comprises:
a columnar semiconductor deposit which comprises at least part of the resonator; and
an insulating layer formed in contact with the side of the semiconductor deposit;
wherein the insulating layer exhibits anisotropic stress caused by the planar configuration thereof, and the polarization direction of laser light is controlled by the anisotropic stress.
The anisotropic stress caused by the planar configuration means stresses which are anisotropic and induced by the planar configuration of the insulating layer. The anisotropic stress includes stresses in the directions intersecting at right angles in different amounts.
According to this surface emitting semiconductor laser, the anisotropic stress can be directly applied to an active layer included in the semiconductor deposit from the insulating layer. Specifically, since the insulating layer exhibits anisotropic stress caused by the planar configuration thereof, the anisotropic stress is applied to the active layer which is in contact with the insulating layer, thereby providing the gain of laser light with anisotropy. As a result, laser light in the specific polarization direction can be preferentially amplified, whereby the polarization direction of laser light can be controlled in a specific direction.
In the surface emitting semiconductor laser according the present invention, assuming that the axes intersecting at right angles through the center of the upper side of the semiconductor deposit are respectively the x-axis and y-axis, the anisotropic stress preferably includes stresses in the x-axial direction and the y-axial direction in different amounts.
According to the surface emitting semiconductor laser having the above configuration, since the anisotropic stress includes stresses in the x-axial direction and the y-axial direction in different amounts, the gain of laser light in the direction perpendicular to the direction in which the amount of stress is the greatest of the x-axial direction and y-axial direction becomes preferential, whereby laser light polarized in the direction perpendicular to the direction in which the amount of stress is greater can be obtained. Therefore, the polarization direction of laser light can be controlled. In addition, since the planar configuration of the insulating layer can be easily adjusted in the layer forming step, the polarization direction can be easily controlled. Moreover, in the case of fabricating a laser array, laser light with uniform characteristics can be obtained.
The following (1) to (4) can be given as embodiments of the insulating layer exhibiting anisotropic stress caused by the planar configuration thereof.
(1) Assuming that the axes intersecting at right angles through the center of the upper side of the semiconductor deposit are respectively the x-axis and y-axis, the planar configuration of the insulating layer may be designed so that the distance between the center and the first intersection point between the x-axis and the side of the insulating layer differs from the distance between the center and the second intersection point between the y-axis and the side of the insulating layer.
Since the planar configuration of the insulating layer is designed so that the distance between the center and the first intersection point between the x-axis and the side of the insulating layer differs from the distance between the center and the second intersection point between the y-axis and the side of the insulating layer, the stress applied to the active layer in the semiconductor deposit from the insulating layer exhibits anisotropy. As a result, the gain of laser light in the direction perpendicular to the direction in which the amount of stress is the greatest of the x-axial direction and y-axial direction becomes preferential, whereby laser light polarized in the direction perpendicular to the direction in which the amount of stress is greater can be obtained. Therefore, the polarization direction of laser light can be controlled.
According to a preferable embodiment of the surface emitting semiconductor laser, a surface emitting semiconductor laser in which a resonator is formed on a semiconductor substrate in the perpendicular direction, from which laser light is emitted in the direction perpendicular to the semiconductor substrate, comprises:
a columnar semiconductor deposit which comprises at least part of the resonator; and
an insulating layer formed in contact with the side of the semiconductor deposit;
wherein, assuming that the axes intersecting at right angles through the center of the upper side of the semiconductor deposit are respectively the x-axis and y-axis, the planar configuration of the insulating layer is designed so that the distance between the center and the first intersection point between the x-axis and the side of the insulating layer differs from the distance between the center and the second intersection point between the y-axis and the side of the insulating layer.
According to this surface emitting semiconductor laser, the above-described effects can be achieved.
(2) The planar configuration of the insulating layer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface emitting semiconductor laser and surface emitting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface emitting semiconductor laser and surface emitting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface emitting semiconductor laser and surface emitting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364971

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.