Fracture stimulation process for carbonate reservoirs

Wells – Processes – With indicating – testing – measuring or locating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S307000, C166S308400

Reexamination Certificate

active

06749022

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates to a new process of fracturing a carbonate reservoir in a subterranean formation to stimulate the production of hydrocarbon fluids from the formation. During the process, the composition and reactivity of the fracture stimulation fluid that is injected into the formation surrounding a wellbore is varied from a lower reactivity fluid to a higher reactivity fluid. The new process is designed to effectively stimulate the fracture starting from the tip of the fracture and progressing back to the wellbore.
Fracture stimulation, commonly referred to as fracture acidizing, or acid fracturing, when acid is the stimulation fluid, is a stimulation technique commonly used to increase the productivity of hydrocarbon fluids from subterranean formations. Fracture acidizing is used in carbonate reservoirs. The technique typically involves the injection of acid, usually aqueous hydrochloric acid (HCl), through a wellbore and into the formation at pressures sufficient to fracture the formation or open existing fractures. The acid etches the fracture faces, resulting in the formation of conductive flow paths. Frequently, the treatments are not effective. The depth of stimulation is typically limited by rapid consumption of acid near the wellbore and loss of acid through the fracture faces (commonly referred to as fluid leakoff or fluid loss). Fluid leakoff is a dynamic process that is influenced significantly by the formation of wormholes that form in the porous walls of the fracture. Wormholes are highly conductive flow channels that form approximately normal to the fracture. These wormholes divert fluid from the fracture, consume large amounts of reactant from the fracture stimulation fluid, and provide no benefit to the conductivity of the fracture. By “conductivity of the fracture” is meant the capability of formation fluids to migrate or flow through the conductive etched flow channels that are formed by the reaction of the fluid with components of the formation along the faces of the fracture. The formation fluids, of course, migrate or flow through such conductive etched flow channels to the wellbore where they are produced to the surface and recovered. The creation of such conductive etched flow channels in the formation is easily evidenced by enhanced production of formation fluids from the well, and such channels can also be visually observed in the laboratory using conventional acid conductivity tests on core samples.
Fracture stimulation fluid systems, such as emulsified HCl, have been devised which tend to provide deeper penetration of live acid. The effectiveness, defined based on the depth of live acid penetration, of such systems in fracture acidizing treatments is enhanced because the rate of dissolution and rate of wormhole propagation are decreased relative to straight HCl. However, near wellbore conductivity is typically low due to insufficient dissolution or etching of the fracture faces that, in turn, is caused by an initial cool-down effect and fracture geometry in the near wellbore vicinity. Thus, a method of increasing both the length and conductivity of the conductive etched flow channels is required to improve the effectiveness of fracture stimulation treatments.
SUMMARY OF THE INVENTION
A novel process of fracture stimulation has now been discovered to stimulate the production of hydrocarbon fluids from carbonate reservoirs in subterranean formations penetrated by a wellbore. The new process comprises injecting a fracture stimulation fluid into and through a wellbore and into the carbonate reservoir under pumping conditions that are selected and controlled to maintain an optimum fracture stimulation efficiency number, F
f
, of about 0.1 to about 0.3 during the fracturing process. The fracture stimulation efficiency number in the present invention is selected and controlled such that the fracture is effectively stimulated starting from the tip of the fracture and progressing back along the fracture to the wellbore. The fracture stimulation fluid compositions and treatment conditions used to maintain the optimum fracture efficiency number can be conveniently regulated by varying the reactivity of the fracture stimulation fluid from a composition of low reactivity to one of higher reactivity during the process. The flow rate and/or viscosity of the fracture fluid can also be varied to control the rate of mass transfer of the reactants and products in accordance with an optimum fracture stimulation efficiency number, based on formation and fluid parameters. The new fracturing process can provide deep penetration of live reactant along the fracture, reduce the rate of wormhole formation to control fluid loss, and efficiently create highly conductive etch patterns on the fracture faces.


REFERENCES:
patent: 6196318 (2001-03-01), Gong et al.
Reservoir Stimulation-Appendix for Chapter 16 “Advances in Understanding and Predicting Wormhole Formation” by Christopher N. Fredd (e.g., at p. A16-4).
Reservoir Stimulation-Chapter 17 “Carbonate Acidizing Design” by J.A. Robert and C.W. Crowe.
Cambridge University Press, New York (1984) “Diffusion: Mass Transfer in Fluid Systems” by Cussler, E.L. Table 9.3-2 on p. 230-231, pp. 301-304.
SPE 50612 “Emulsified Acid Enhances Well Production in High-Temperature Carbonate Formations” by R.C. Navarrette, B.A. Holms, S.B. McConnell and D.E. Linton.
Reservoir Stimulation-Chapter 5 “Basis of Hydraulic Fracturing” by M.B.Smith and J.W. Shlyapobersky (pp. 5-25).
Reservoir Stimulation-Appendix for Chapter 5 “Evolution of Hydraulic Fracturing Design and Evaluation” by K.G.Notle (pp. A-15).
SPE 27403 “The Effect of Wormholing on the Fluid Loss Coefficient in Acid Fracturing” by A.D. Hill, Ding Zhu and Y. Wang.
Chemi. Eng. Sci., 53 (22) “Kinetics of Calcite Dissolution in Acetic Acid Solution” by Christopher N. Fredd and H. Scott Fogler (pp. 3863-3874).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fracture stimulation process for carbonate reservoirs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fracture stimulation process for carbonate reservoirs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fracture stimulation process for carbonate reservoirs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364940

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.