Polymeric material, molded product and methods for their...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Treating polymer containing material or treating a solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S176100, C264S219000, C422S131000, C528S193000, C528S194000, C528S196000, C528S271000, C528S272000, C528S384000

Reexamination Certificate

active

06818736

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a polymeric material useful for various plastic material, to a molded product and to a method for there production.
2. Description of the Background Art
Plastics are substituting for existing materials, such as metal, glass, wood, and paper, due to their molding processabilities, high productivities, light weights, flexibilities, excellent mechanical or electrical properties, etc. Their application range is wide and they are used for a variety of applications such as construction materials, structural or mechanical parts of electric or electronic products, exterior or interior parts of automobiles, vehicles, aircrafts and ships, miscellaneous goods and packing materials. For this reason, there are many kinds of plastics and those of various types are marketed.
However, there is a great demand from the market for improvement in various characteristics or cost, and alloying of different plastics and compounding with other ingredients are performed briskly. For example, about the improvement in mechanical property, heat resistance, dimensional stability and the like, organic-inorganic composite materials in which a solid inorganic material typified by glass fiber and carbon fiber has been blended were studied. This technique has improved strength, thermal deformation resistance in a short period of time, dimensional stability and the like.
However, a plastic and an inorganic material are generally incompatible and it is difficult to finely disperse both materials and, consequently, the size of dispersed particles of an inorganic material in an organic-inorganic composite material is generally up to the order of micrometers. Since the size of particles have great effects on strength such as tensile strength and the strength is reduced as particles becomes larger (see L. E. Nielsen, Dynamic Properties of Polymer and Composite Material, p. 253), it is natural that there are limitations to the improvement in strength of organic-inorganic composite materials described above. Further, for some types of plastics, e.g., ABS resin, polyamide 6-6, polycarbonate, polyacetal and fully aromatic polyester, there have been raised new problems such as reduction in impact strength caused by decrease in interface strength.
On the other hand, organic-inorganic hybrid polymeric materials containing inorganic elements such as Si, Ti and Zr introduced into their backbone have been studied for the purpose of improvement in various physical properties of plastics including surface hardness, luster, antifouling property, strength, heat resistance, weather resistance, chemical resistance and the like.
The size of dispersed particles of each component of an organic-inorganic hybrid polymeric material is up to the orders of sub-microns to nanometers and it is possible to disperse the components at the molecular level. As a method for the preparation thereof, for example, there have been known a method subjecting an organic monomer or an organic polymer and an inorganic backbone-containing compound to radical copolymerization and a method bonding an inorganic functional group such as alkoxysilane as a side chain to an organic polymer and thereafter cross-linking it.
For example, Japanese Patent Kokai Publication No. H5-43679 and Japanese Patent Kokai Publication No. H5-86188 disclose a method for obtaining an organic-inorganic hybrid polymeric material by allowing a vinyl polymer and a silicon compound to react and thereafter cross-linking them by a sol-gel method. Japanese Patent Kokai Publication No. H8-104710 and Japanese Patent Kokai Publication No. H8-104711 disclose a method for obtaining an organic-inorganic hybrid polymeric material by subjecting vinyl monomers to radical polymerization with an alkoxysilyl group-terminated azo-type initiator and hydrolyzing and condensing the resulting alkoxysilyl group-terminated vinyl polymer. Further, we reported in Japanese Patent Kokai Publication No. H11-209596, etc. a method for obtaining an organic-inorganic hybrid polymeric material by synthesizing an alkoxysilyl group-terminated polycarbonate or polyarylate and thereafter hydrolyzing and polycondensing it by a sol-gel method.
However, these organic-inorganic hybrid polymeric materials require a production process containing two steps: first allowing an organic monomer or organic polymer and an inorganic compound to react to synthesize an intermediate compound and then allowing the inorganic component introduced to react again. Further, the inorganic compound to be used is often specific and is, in general, expensive.
Moreover, most of the conventional organic-inorganic hybrid polymeric materials are produced by methods in a solution system using a sol-gel method. The sol-gel method is a method for molding glass or ceramic by starting from a solution, passing a state of sol containing fine particles and further passing a state of gel containing a liquid or the air in a space defined by the frames of a solid (see Sumio SAKKA, Science of the Sol-Gel Method, Introduction). Accordingly, although simple structures such as films and rods can be produced, it is very difficult to produce molded products of complex shape. The methods carried out in a solution system are disadvantageous also in terms of productivity and cost and, therefore, are not practical except for specific applications.
Japanese Patent Kokai Publication No.2000-327930 discloses a method for producing an organic-inorganic hybrid polymeric material by heat-treating an organic polymer, an organic polymer having a metal alkoxy group, a metal alkoxide compound or a metal oxide with a mixer such as a Brabender. However, such a mixer has only a poor kneading ability since its mixing portion is constituted of a pair of blades having a short shaft. In addition, one pair of blades are fixed so that it is impossible to set the conditions of the kneading portion at will depending upon a material to be employed. Such a mixer, therefore, is difficult to finely disperse an organic polymer and an inorganic component such as metal oxide, which are of great incompatibility, with each other and is not suitable for the preparation of organic-inorganic hybrid polymeric materials. Furthermore, such a mixer has many problems with respect to steps and productivity for its industrial use since it is a batch-type instrument.
SUMMARY OF THE INVENTION
The present invention solves the conventional problems and an object of the present invention is to provide an organic-inorganic hybrid polymeric material suitable for high-performance and high-function plastics or a polymeric material containing that component, molded products obtained by processing those polymeric materials and simple and practical methods for producing those products at high productivity and at low cost.
The present invention relates to a polymeric material obtained by melt-kneading, using a kneading apparatus, a resin composition that contains an organic polymer not having any metal alkoxy group and a metal alkoxide compound and that contains no organic polymer having a metal alkoxy group and to a polymer molded product obtained by processing the polymeric material using a molding machine. The present invention also relates to methods for producing the polymeric material and polymer molded product.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an organic-inorganic hybrid polymeric material or a polymeric material containing this component, both polymeric materials being suitable for high-performance and high-function plastic material applications, molded products obtained by processing these polymeric materials, and simple and practical methods for producing the polymeric materials and molded products.
The conventional organic-inorganic hybrid polymeric materials are, in general, produced via two steps consisting of a step of synthesizing an intermediate compound by allowing an organic monomer or polymer to react with an inorganic compound and a subsequent step of allowing the inorganic component

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymeric material, molded product and methods for their... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymeric material, molded product and methods for their..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymeric material, molded product and methods for their... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361084

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.